
,,D-Ai38 e9i DISTRIBUTED DATABASE CONTROL RND ALLOCATION VOLUJME i /
FRAMEWORKS FOR UNDER..(U) COMIPUTER CORP OF AMERICA
CAMBRIDGE MA W K LIN ET RL. OCT 8]

UNCLASSIFIED R DC-TR-83-226-VOL-i F 9 62-8-C-828 F/ 9/2 NL

L51

a12.

, It

%* % a%%

del. t*a.

',F.
1 ..

P.%-

RADC-TR-83-226t Vol I (of three)
Final Technical Report
October 1963

ADA 388 9 1

DISTRIBUTED DATABASE CONTROL
AN ALLOCATION Frameworks for
Understandng Concurrency Control
and Recovery Algorithms

Computer Corporation of America

Wente K. Lin. Philip A. Bernstein, Nathan Goodman and Jerry Nolte

.~ .~APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

IDTIC

ROME AIR DEVELOPMENT CENTER c-
u..z Air Force Systems Command

I Griffiss Air Force Base,, NY 13441

ppa

" 64 03 lit 00S

-a- WL -:* -F? 7.;L-a.

This report has been roviewed by the KADC Public Affairs Office (PA) an(
is releasable to thc National Fechnical Information Service (NTIS). At N"TIS
it will be releasable to the general public, including foreign natio.s.

K i RADC-TR-83-226, Vol I (of three) has been reviewed and is approved for

publication.

APPROVED: ~~

5I EMILIE J. SIARKIEWICZ
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER:

DONALD A. BRANTINGHAM
Plans Office

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer empioyed by your organization,

please notify RADC (COTD) Griffiss AFB WY 13441. This will assist us in

maintaining a current mailing list.

Do not return copies of this report unless contractual oblig.tions or notices

on a specific document requires that it be returned.

_ _r ..--7" - S -- , .' ' a . :*- N .--
" -

.
-

- -. ' -. -- -y" • ... i., ' lv '.A ?. "

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wlheni DataEntered).
REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

REPORT DOCMETBEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-83-226, Vol I (of three) - _ _ __ (_-,.._'_-L

4. TITLE (aid Subitle) S. TYPE OF REPORT & PERIOD COVERED

DISTRIBUTED DATABASE CONTROL AND ALLOCATION Final Technical Report
Frameworks for Understanding Concurrency Jan 1981 - Jan 1983
Control and Recovery Algorithms 6. PERFORMING OG. REPORT NUMBER

* __ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ N/A
7. AUTHOR() s. CONTRACT OR GRANT NUMBER(

Wente K. Lin Nathan Goodman F30602-81-C-0028
Philip A. Bernstein Jerry Nolte

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK , -

Computer Corporation of America AREA & WORK UNIT NUMBERS

Four Cambridge Center 62702F
Cambridge MA 02142 55812121
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -.October 1983 '''''
Rome Air Development Center (COTD) O UMBc OF PAGES

Griffiss AFB NY 13441 300
14. MONITORING AGENCY NAME & ADDRESSIII different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
Same Sa. DECLASSIFICATION/DOWNGRADING

IA SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract eitered In Block 20, it differmt from Report)

Same " ""

II. SUPPLEMENTARY NOTES

RADC Project Engineer: Emilie J. Siarkiewicz (COTD)

IS. KEY WORDS (Continue an revers side it nceesary mnd Identify by lock rnmber)

Distributed Databases
.- Concurrency Control

Reliability

20. ABSTRACT (Cminue m reveree side If notesalv mid Idmti y by block number)

This is the first of three volumes of the final technical report for the
* project "Distributed Database Control and Allocation"'. This volume des-

cribes frameworks for understanding concurrency control and recovery

algorithms for centralized and distributed database systems. The second
volume describes work on the performance analysis of concurlency control

algorithms. The third volume summarizes the results in the form of a
distributed database designer's handbook.

DO 1 1473 EDITION oF I NOV 5 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (homi Date Entered)

.. a, *~* .4e -,....

UNCLASSFIEID
r9CURITY CLASFICATION OF THIS PAGI(Whaa eZm4

This volume is an anthology of papers organized in two parts. Part une
covers concurrency control and consists of four papers. Part Two covers
recovery algorithms and consists of four papers.

The first paper presents an overview of concurrency control algorithms for
%. distributed database systems. It decomposes the concurrency control prob-
%. lem into several subproblems, and describes the known solutions to the sub'

problems. This paper extends Bernstein and Goodman's earlier survey of th.
subject ("Concurrency Control in Distributed Database Systems," ACM Compu-
tin& Surveys 13,2 (June 1981) by using an improved decomposition into sub-
problems and by including more algorithms, notably certifiers and multi-

version algorithms.

In a multiversion concurrency control algorithm, each write operation on a
data item, x, produces a new "version" of x, leaving old versions of x un- -
changed. The second paper presents a comprehensive description and logica
analysis of multiversion concurrency control algorithms. It extends seria -

izability theory to handle the multiversion semantics of "write." It
describes multiversion concurrency control algorithms based on locking and
timestamping, and proves them correct using the extended theory.

The third and fourth papers present mathematical analyses of two-phase
locking algorithms. The third paper describes a queueing theoretic approa h
coupled with a random graph analysis of deadlocks. The fourth paper des-
cribes a new control theoretic analysis that uses significantly weaker
assumptions than the standard queueing theoretic approach; thus, its
conclusions are quite general. These analyses only study a few of the man,
available concurrency control algorithms, and therefore are not comprehen-
sive. They principally demonstrate the feasibility of these approaches,bul
leave open a more complete comparative analysis of algorithms. Such a
comparative analysis using simulation techniques appears in the second

,' volume of this report.

A nonmathematical survey of these algorithms is presented in the fifth
paper. It describes methods for: undoing a transaction after it aborts;
redoing committed transactions after a site fails; extending any centraliz4d
undo or redo algorithm to a distributed system.

A mathematical model of recovery algorithms is presented in the sixth
paper. Each of the algorithms described in the previous paper is proved
correct using this model.

. .. The seventh paper presents a new algorithm for site recovery in a distribu-
ted database system. The problem is how to bring a site's database up to A
date after it has recovered from failure. The solution allows different
portions of the database to be brought up to date independently, thereby
avoiding a strongly synchronized bulk transfer of the entire database.

The last paper presents an optimal algorithm for undoing a set of trans-
V@ actions to a consistent state. The problem is that when one transaction

is undone, any transaction that read its output must also be undone. Thus
undo's may cascade requiring many other transactions to be undone. It is
shown that there is a unique best set of transactions to undo, and a fast
algorithm for finding this set is described.

" "UNCLASSIFIED

SECURITY CLASSIFICATION OF T-* AAGE(Whon Date Err-...'

, ,4. %.
%.....%.%.....

P%./. N % %

"-'J CONTENTS

--

Page

"-x ~Executive Summaryii"-

*.

:,' .[I .• I n t r o d u c t i o n1 --

II• A Sophisticate's Introduction to Distributed.Database Concurrency Control 4

III Multiversion Concurrency Control -- Theory -

and Algor.thins 52-"-

1"%

IV. Performance Analysis of Concurrency Control
SMethods in Database Systems 90

IV. A Simple Analytic Model for Performance of
Exclusive Locking in Database Systems 118

=VI. Recovery Algorithms for Database Systems 172
VII. An Operational Model for Database System of

.'.>R e i a b i li ity 1 98 " .

VIII. Site Initialization, Recovery, and Back-Up 'uin a Distributed Database System 255IX. An Alg Algorith Minimizing Roll Back Cost 273

5,e -S.

V A e o M f D a y

Veliability-198 ..

.* N• .' " ,:'-"L' ,' .2,...,. .. - .-. ,,..-." " . -."-."-" ." ,'...'. • ." "...,...,'...' -, . " ,',.'. • '.. , .. ,. ,. ,- .-. ,"*"* *"-*. - " " ,* " " *,.1, . " ' ' ' ' . " . - ' ' : 5 ' 2 " : ' ' ' - ' , .~ r . ' - .> , . ' . ." . - ' . . . - v . - " - " . , " .> '

Distributed Database Control and Allocation .

~Executive Summary ""

The design of a distributed database management system (DDBMS)
involves many critical design decisions. It is recognized that one .--
of the most important of these design decisions is the choice of
the concurrency control algorithm to be used. Many concurrency ['"

control algorithms for DDBMSs have been proposed (48 principal ones _
were identified in the previous effort*), but few studies have been '-
undertaken to rigorously compare their performance and other -
characteristics. One possible reason for this is that, in detail, '
these algorithms seem very different, thus making comparison
difficult. As a result, the DDBMS designer finds it difficult to
choose the concurrency control algorithm which is given the design
parameters of the particular system under consideration. "

Consequently, the Distributed Database (DDB) Control and Allocation ¢
project had the following objectives:<.

1. Review the distributed concurrency control research
published in the literature and incorporate that research "-.
into the taxonomy of the distributed database concurrency,..
control algorithms. Based on this taxonomy, develop a '
new framework for distributed database control....

2. Develop new distributed database concurrency control .
algorithms using the framework developed in 1. "-

3. Simulate the performance of the distributed database""
concurrency control algorithms that are found to be .-
dominant in the previous study."''

4. Build an analytical model of distributed database "
concurrency control."..

5. Survey the current studies of reliability and ...--
recovery of distributed database systems and the analysis"-
of published algorithms.

'.9°.

*This effort was a follow-on to a previous effort conducted by the ".-
same research team which is documented in "Fundamental Algorithms
for Concurrency Control in Distributed Database Systems," Philip A.Alo

Bernstein, et al, RADC TR-80-158, May 1980."'-.

9...?i~

-iv-

6. Develop a framework for reliability and recovery of
distributed database systems.

7. Consolidate the results of the previous tasks into a
system designer's handbook.

The first objective was achieved by means of the framework

discussed in Section II of Volume I. The framework facilitates the
taxonomy of distributed concurrency control algorithms by
identifying the essential component functions of distributed
concurrency control mechanisms. The following is a summary of that
section.

A distributed database system (DDBS) is a database system
that provides commands to read and write data that is
stored at multiple sites of a network. If users access a

DDBS concurrently, they may interfere with each other by
attempting to read and/or write the same data.
Concurrency control is the activity of preventing such
behavior. The following simple model of DDBS structure
and behavior highlights those aspects of a DDBS that are
important for understanding concurrency control.

A database consists of a set of data items (e.g., a
simple variable, file, record, or page, etc.). Users
access data items by issuing read and write operations.
Read(x) returns the current value of x, while write(x,
new-value) updates the current value of x to new-value.

Users interact with the DBMS by executing programs called
transactions. Each site of a DDBS runs one or more of

the following software modules: a transaction manager
(TM), a data manager (DM), or a scheduler. Transactions
talk to TMs, TMs talk to schedulers, schedulers talk
among themselves and to DMs, DMs manage the data. Each
transaction issues a 'begin' operation to its TM when it
starts executing and an 'end' when it is finished. The
TM forwards each read and write to a scheduler. The
scheduler controls the order in which DMs process reads
and writes. The DM executes each read and write it
receives for the data items at its site.

The DDBS modules that are most important to concurrency
control are schedulers. There are three types of
schedulers: two-phase locking, timestamp ordering, and
serialization graph checking. Two-phase locking requires
setting a read (or write) -lock for transaction Ti before
outputting ri[x] (or wi[x]). The lock must be held at
least until the operation is executed by the appropriate
DM. Different transactions cannot simultaneously hold
'conflicting' locks. Two locks conflict if they are on
the same data item and at least one is a write-lock. In
timestamp ordering (T/0) each transaction is assigned a
globally unique timestamp by its TM. All pairs of p.
conflicting operations are then output in timestamp
order. A serialization graph (SG) is a directed graph
whose nodes are transactions, such as TO, ... , Tn, and

....- .. "."".-...."....- .
-" ""-.""."- ."- . . ., , ," , .-' ",: ".. .- '"k"....... ".. .--

, ~.-. . .-'. . ". .', . ''L. .. , • . . .*. . .. , .. •

-' '" whose edges are all Ti-->Tj, such that, for some x, (i) .Ti reads x before Tj writes x, or (2) Ti writes x before

Tj reads x, or (3) Ti writes x before Tj writes x. A

serialization graph checking scheduler works, therefore,
by explicitly building a serialization graph and checking
it for cycles.

Each of these schedulers can be adapted to work as a
certifier (the term 'certifier' refers to a scheduling
philosophy rather than a specific scheduling rule). A
certifier makes its decisions on a per-transaction basis.
That is, when it receives an operation, it internally

5-.. stores information about the operation and outputs it as
soon as all earlier conflicting operations have been
acknowledged. When a transaction ends, its TM sends an
'end' operation. At this point, the certifier checks its
stored information to see whether the transaction
executed serializably. If it did, the certifier
certifies the transaction, allowing it to terminate;
otherwise, it aborts the transaction.

In addition to the type of scheduler, the location of the
scheduler and how replicated data is handled must be

taken into consideration for distributed database
concurrency control. Instead of one scheduler for the
whole system, there is one scheduler per DM. The
scheduler normally runs at the same site as the DM and
schedules all operations that the DM executes. There are
three approaches to handling data replication: 'do
nothing', 'primary copy', and 'voting'. In the 'do
nothing' approach each read reads from the latest
transaction preceding it that wrote into any copy of the
data item and writes into all copies of each data item
using a serializable scheduler. In the 'primary copy'~approach, some copy of each data item is designated the

primary copy, such that each TM translates ri[x] into
ri[xj] for some copy xj, but translates wi[x] into a
single write on the primary copy and the primary copy's

scheduler issues writes on the other copies of x. In the
voting' approach, writes are issued to all copies of

each data item and when the scheduler is ready to output
wi[xj), it sends a vote of 'yes' to the vote collector
for x. When the vote collector receives 'yes' votes from
a majority of schedulers, it tells all schedulers to
output their writes.

The second objective of developing new algorithms using this
framework is achieved by the algorithms described in Section III of
Volume I. That section describes the work in extending concurrency

- control theory to multiversion databases. In a multiversion
database each write operation on a data item, x, produces a new
"version" of x, leaving old versions of x unchanged. When

A transactions issue operations that specify data items, the system
must translate these into operations that specify versions. In a
single version database, concurrency control correctness depends on
the order in which reads and writes are processed. In a
multiversion database, correctness depends on translation as well

................ 4:>

- 7 F W. - 77 77

-vi-
as order.

The main idea is one-copy serializability: an execution of
transactions in a multiversion database is one-copy serializable
(l-SR) if it is equivalent to a serial execution of the same
transactions in a single version database. A multiversion
concurrency control algorithm is correct if all of its executions
are 1-SR. Effective necessary and sufficient conditions for an
execution to be 1-SR were derived which use the concept of version

N" order. A graph structure, multiversion serialization graphs
-~ (MVSGs), that helps check these conditions is given. Once a ""

version order is fixed, an execution is 1-SR if and only if its
- . MVSG is acyclic. MVSGs are analogous to the serialization graphs

widely used in single version concurrency control theory. The
theory was applied to three multiversion concurrency controlalgorithms. One algorithm uses timestamps, one uses lock ing, and .[
one combines locking with timestamps.

The third objective of simulating and evaluating the performance of
distriuted database concurrency control algorithms is documented
in Sections II through VI of Volume II. Section II presents a
study that analyzed the relationship between the performance of the
two-phase locking algorithm and the following system parameters:
access distribution of the database, data granularity, transaction
size, and multiprogramming level. In a distributed database
system, communication delay is also a major factor affecting the
performance of a concurrency control algorithm. Section III
documents an analysis of the relationship between the performance
of the two-phase locking algorithm and communication delay.

Another important factor that affects performance is the number of
read-only transactions relative to the number of write
transactions, i.e., the ratio of read-only to write transactions.
Section IV documents an analysis of the relationship between the
performance of the two-phase locking algorithm and that ration.

Section V extends the analysis to algorithms based on timestamps '-y
presenting a comparison of the performance of three distributud
concurrency control algorithms -- the basic timestamp, multiple
version timestamp, and two-phase locking. Section VI documents the
analysis of the two-phase locking algorithm in more detail and the
refinement of the algorithm into nine algorithms. In addition, the
previous two timestamp algorithms were reevaluated in more detail

. and a new timestamp-based algorithm, the dynamic timestamp
algorithm, was analyzed. The performance of the twelve algorithms
was then compared. The results of these simulation studies could
form the basis for designing a distributed database designer's aid.

___ The designer's aid would help the system designer to design
distributed transactions, partition the database into fragments,
replicate and distribute the fragments, and choose the concurrency
control algorithm that performs best in his system environment..

The fourth objective of analytical modeling of the distributed
h@P concurrency control algorithms was achieved through the analytical S

models described in Sections IV and V of Volume I. Section IV
describes using a queueing theoretic approach coupled with a random
graph analysis of deadlocks. An analytical model was developed for

2

V i

.- . the general two-phase locking algorithm, which can be used to
estimate the steady state rates of conflicts and deadlocks in the
system. Dynamic two-phase locking was analyzed, proceeding from a

- simple deadlock prevention two-phase locking algorithm (which gives
worst case bounds on the performance of any deadlock preventing

- two-phase locking algorithm) to the general case of two-phase
-- locking where deadlocks are allowed. Under reasonable assumptions

for transaction behavior, it was found that the rate of deadlocks
is proportional to the average number of transactions in the system
and the rate of conflicts is proportional to the mean of the
product of the number of free transactions in the system multiplied
by the total number of transactions in the system.

[" '.. Section V describes using a new control theoretic analysis that
uses significantly weaker assumptions than the standard queueing
theoretic approach, thus, its conclusions are quite general. The

model presented is easy to understand and costs little to solve
computationally, that captures the essential features of the system
it models. The model has two parts: a flow diagram and a set of
equations describing the behavior of the system. The equations are
derived using the steady state average values of the variables.
The underlying idea is to characterize the system in terms of those
average values, instead of detailed dynamics involving tO
instantaneous values of each variable.

These analyses only studied a few of the many available concurrency
control algorithms, and, therefore, are not comprehensive. They
principally demonstrated the feasibility of these approaches.

The survey/study of reliability and recovery of distributed
database systems that achieved the fifth objective is documented in
Sections VI through IX of Volume I. The following paragraphs
contain a brief summary of the current taxonomy of recovery
algorithms as well as a description of Sections VI-IX.

* .The recovery algorithm of a DBS avoids incorrect states
caused by transaction failures and system failures by
ensuring that the database only includes updates that are

. * produced by transactions that execute to completion. A
centralized DBS is modeled as storage, a scheduler, and a
recovery system.FE! The storage component consists of buffer storage and
stable storage. Both are divided into physical pages of
equal and fixed size. Buffer storage models main memory

S.* and stable storage models disk memory. The DB consists
of a set of logical pages. A transaction is a program
that can read from or write into the DB and can issue
four types of commands: read, write, commit, and abort.
The scheduler controls the order in which these commands
are passed to the recovery system and guarantees that the
execution is recoverable. The recovery system processes
the read, write, commit, and abort commands it receives
from the scheduler and handles system failures.

Recovery algorithms often store copies of pages that were
recently written on on an audit trail (sometimes called a

~-viii-

journal or log). For each write processed by the
algorithm, the audit trail may contain the identifier of
the transaction that performed the write, a copy of the
newly written page (called the after-image, and a copy of
the physical page in the stable database that was
overwritten by the write (called the before-image).
Different algorithms vary considerably in the information
they keep on the audit trail and in how they structure
that information. Recovery algorithms also differ in the
time at which they write pages into the stable database.
They may perform such writes before, concurrently with,
or after the atomic instruction that ommits the• -.. transaction that last wrote those pages. I- i :)age that ."

is written by an active transaction is wr ten into the
.% . stable database before the transaction com -,a and the

transaction aborts due to a system c transaction
failure, the recovery algorithm must undo .. write by
restoring the previous copy (before-image - the page.
If a page that is written by an active transaction is not
written into the stable database before the transaction
commits and a system failure occurs after the transaction
commits, but before the page is written into the stable
database, the recovery algorithm must redo the write by

**.'.[moving the page to the stable database.

Recovery algorithms can be categorized based on the
timing of updates to the stable database. Consequently,
there are four basic types of recovery algorithms: ones
that require undo but not redo, redo but not undo, both
undo and redo, and neither undo nor redo.

As previously stated, a DDBS is modeled by a set of
transaction managers (TMs), data managers (DMs), and
schedulers. A DM is a centralized DBS as defined above.
It processes reads and writes on pages stored at its
site. It also processes commits and aborts, which
permanently install or undo the writes of a transaction
at the DM site. A TM interfaces transactions and DMs.
Unfortunately, TMs and DMs may fail at unpredictable
times. Each TM must process commands so that failures of
other TMs and/or DMs never cause it to produce incorrect
results. Consequently, each TM keeps an active
transaction list, a commit list, and an abort list in
stable storage for reference against TM failures.

K- To avoid inconsistencies caused by TM failures, there are

two basic commit algorithms: two-phase commit and
three-phase commit. In two-phase commit a TM does not
send 'commit(i)' to any DM until every DM in 'active(i)'
has transaction T(i)'s after-images on stable storage.
In three-phase commit each TM has one or more backup TMs,
such that if a TM fails, the backup can take over its
functions. In particular, a three-phase commit is a
two-phase commit with an added step: the TM sends a
6precommit(i) to each backup and waits for all backups
to acknowledge before it sends 'commit(i)' to each DM in
'active(i)'. Aborts are handled in a similar way.

".'-'- '.'-'.-'.'---'.'- -"-'.- --" " ",--.-,',-.-'L''-..'.. '. .'.. -

-ix-

To avoid delay caused by the failure of a DM, the DBS can
replicate data, that is, store parts of the database at
more than one DM site. If one copy is unavailable due to
a DM failure, other copies can be used instead.
Replication of data, however, introduces another
dimension to the consistency problem that involves the
concurrency control algorithms described elsewhere in
this report.

Section VI of Volume I presents a non-mathematical survey
of recovery algorithms and describes methods for undoing
a transaction after it aborts, redoing committed
transactions after a site fails, and extending any
centralized undo or redo algorithm to a distributed
system.

Section VII presents a mathematical model of recovery
algorithms (which is described below) and the correctness
proof using this model for each of the algorithms
described in Section VI.

Section VIII describes a new algorithm for site recovery
in a distributed database system. The problem is how to
bring a site's database up to date after it has recovered
from failure. The solution nresented allows different
portions of the database to be brought up to date
independently, thereby avoiding a strongly synchronized
bulk transfer of the entire database to the recovered
site.

Section IX describes an optimal algorithm for undoing a
-. set of transactions to a consistent state. The problem

is that when one transaction is undone, any transaction
that read its output must also be undone. Thus, undos
may cascade requiring many other transactions to be
undone. It is shown that there is a unique best set of
transactions to undo, and a fast algorithm for finding
that set is described.

Because the subject of reliability and recovery of DDBSs
is relatively unexplored, only a few algorithms were
reported. Further research is needed to discover new
algorithms.

A framework for the reliability and recovery of a distributed
database system achieving the sixth objective is described in
Section VII of Volume I. The framework consists of an operational, "
state-based model for studying reliability of DBSs, i.e., the
system is described at any point in time by a "system state".
Reliability-related properties of the system (e.g., "resiliency")
can be expressed as predicates on the system state. Transaction
processing algorithms can be described as state transition

SO functions, mapping the current system state to the next. Finally, -
correctness and other reliability properties of algorithms can be
proved formally by examining the system state sequences that can be
generated by the algorithms in question.

%-°.

.ox _

This framework captures the essential components of existing
reliability and recovery algorithms. But, because research on this
subject is in its primitive stages, more research is needed to
refine the framework and to use it to develop more efficient
algorithms. Moreover, the refined framework could become a basis
for the standardization of distributed reliability and recovery
architectures.

Finally, all these results were summarized in a separate
Distributed Database System Designer's Handbook (objective seven),which is included as Volume III. This handbook can help the

designer to select a distributed concurrency control algorithm that
performs best in his system environment. The following is a

*; summary of those results and recommendations.

The twelve concurrency control algorithms identified in
the previous effort as being dominant methods were
selected for further study. These algorithms are called

(1) primary site and primary site two-phase locking,
(2) primary copy and primary copy two-phase locking,
(3) basic and basic two-phase locking,
(4) basic and primary copy two-phase locking,
(5) basic and primary site two-phase locking,
(6) DDM multiple version and optimistic two-phase

locking (DDM),
(7) basic and optimistic two-phase locking,
(8) majority consensus timestamp,
(9) wait-die two-phase locking,
(10) basic timestamp,

* .K (11) multiple version timestamp, and
(12) dynamic timestamp.

Five of the twelve were found to perform best in various
system environments: basic timestamp, multiple version
timestamp, DDM, basic-optimistic two-phase locking, and
basic-primary two-phase locking.

When most transactions are short, algorithms that abort
conflicting transactions (such as basic timestamp and
multiple version timestamp) perform better than
algorithms that block conflicting transactions (such as
basic-primary). In this environment, transactions

"- conflict rarely; and when they do conflict, the blocking
transactions tend to be longer than the average
transaction size and blocking delay. If a two-phase
locking algorithm must be used, algorithms that delay 0
lock conflict checking (such as the DDM and the
basic-optimistic) perform better than those that expedite
lock conflict checking (such as basic-primary). Unless
the communication bandwidth is very high, communication
delay can devastate system performance; thus, the
designer should reduce communication delay by locally 9
controlling and accessing data as much as possible.

However, no matter which concurrency control algorithm

.*..-*.%

-xi- ..{

the designer uses, a system that has long transactions
always performp worse than a system that has short
transactions. The designer should design transactions to
access as much data in parallel as possible, and to break
long transactions into shorter transactions.

The performance study showed that no one algorithm
performs best in all system and application environments.
If the system environment is stable, the database
designer can select one algorithm that performs best in
the environment. If the system environment is not .
stable, the database designer can assign different
weights to different environments according to how often
the system stays in each environment. The database
designer then selects the algorithm that has the best
weighted average performance.

From the results, it can be concluded that the best

algorithm would be one that could be adjusted by the
system administrator, according to the environment, to
use transaction abortion and delay lock conflict
detection whenever transactions are short, and to use
transaction blocking and detect lock conflicts as soon as
possible whenever transactions are long. The adjustable
algorithm would also alternate, depending on the load on

the communication channel, between algorithms that have
more localized control and algorithms that have more
distributed control.

In summary, all of the objectives were satisfactorily met. The
next step would be to refine the taxonomy for reliability and
recovery algorithms and conduct performance evaluations for
existing and new algorithms, as was done in this effort for
concurrency control. A successive task would then be to translate
the results of both evaluation efforts into a practical, integrated
set of tools that aid distributed database designers, and into a
standard architecture of distributed DBMS that facilitates the
interconnection of different DBMSs.

. ..- ,,.

* -. .

Sk. I ,~1'%~1 -u-. ~ ~ *~*~ - -;w~~-;w-;~ v r~ r .

9?\.

~

-1-*: **.;

4~* .,. -.
-p.

V -.

p~e
SECTION I

-.h. ~ INTRODUCTION

--- 4,

'p.4,'.

S..--

%~ -4

'p.

-. 4

'p.

-4
'p..

'~1*~

pp.

.. '

-2-

This is the first volume of the final technical report for the

project "Distributed Database Control and Allocation," sponsored by

". Rome Air Development Center, contract number F30602-81-C0028. This

volume describes frameworks for understanding concurrency control and

recovery algorithms for centralized and distributed database systems.

The second volume describes work on the performance analysis of con-

-[>.-currency control algorithms.

This volume is an anthology of papers organized in two parts.

Part One covers concurrency control and consists of Sections II through

% V. Part Two covers recovery and consists of Sections VI through IX.

Section II presents an overview of concurrency control algorithms

-* for distributed database systems. It decomposes the concurrency control

problem into several subproblems, and describes the known solutions to

the subproblems. This paper extends Bernstein and Goodman's earlier

survey of the subject ("Concurrency Control in Distributed Database Systems,"

AC4 Computing Surveys 13,2 (June 1981)) by using an improved decomposition

into subproblems and by including more algorithms, notably certifiers and

multiversion algorithms.

In a multiversion concurrency control algorithm, each write operation

on a data item, x, produces a new "version" of x, leaving old versions 1.

of x unchanged. Section III presents a comprehensive description and logi-
~,.-

cal analysis of multiversion concurrency control algorithms. It extends 46

"--" serializability theory to handle the multiversion semantics of "write." It

describes multiversion concurrency control algorithms based on locking and .42

timestamping, and proves them correct using the extended theory.

Section IV and V present mathematical analyses of two-phase locking

algorithms. Section IV uses a queueing theoretic approach coupled with a

-d' I, WZ .- . . - . . . 4 . ~.

~ AA .. 2'..~a 2~.~ . ~ N. ~ -a26-

-. :T.' ..

-3-

random graph analysis of deadlocks. Section V uses a new control theoretic

analysis that uses significantly weaker assumptions than the standard ..

queueing theoretic approach; thus, its conclusions are quite general. These

analyses only study a few of the many available concurrency control algori-

thims, and therefore are not comprehensive. They principally demonstrate the

" feasibility of these approaches, but leave open a more complete comparative

analysis of algorithms. Such a comparative analysis using simulation tech-

niques appears in the second volume of this report.

Part Two describes recovery algorithms for database systems. A non-

mathematical survey of these algorithms is presented in Section VI. It des-

cribes methods for: undoing a transaction after it aborts; redoing co nitted
m1*-..

transactions after a site fails; extending any centralized undo or redo

%. algorithm to a distributed system.

_ A mathematical model of recovery algorithms is presented in Section VII.

Each of the algorithms described in Section VI is proved correct using this

model.

Section VIII presents a new algorithm for site recovery in a distributed

database system. The problem is how to bring a site's database up to date

.' after it has recovered from failure. The solution allows different portions

of the database to be brought up to date independently, thereby avoiding a

strongly synchronized bulk transfer of the entire database to the recovered site.

Section IX presents an optimal algorithm for undoing a set of transactions

to a consistent state. The problem is that when one transaction is undone, EM

any transaction that read its output must also be undone. Thus, undo's may

cascade requiring many other transactions to be undone. It is shown that there

is a unique best set of transactions to undo, and a fast algorithm for finding

this set is described.

' """ . "' ,"""..." " ,.'. '''."' . '.'-'',- . " '- ."'/ .+.","..-" . """."IT. ". -"'"..'"- " -" "., ._"".-" .".

7 - I - C- v . I KI 7b W. I Q7 I. 10 1 L~ h *

-4-

4 SECTION II

A SOPHISTICATE"S INTRODUCTION TO

DISTRIBUTED DATABASE CONCURRENCY CONTROL*

p....%

*PbihdintePoeeig fth.t nerainlCofrneo

VeyLreDt Bss eioCiy et 92

,r%

ABSTRACT

K'.'. " -'

Dozens of articles have been published describing "new" concurrency

control algorithms for distributed database systems All of these algo-

rithms can be derived and understood using a few basic concepts. We show

how to decompose the concurrency control problem into several subproblems,

each of which has just a few known solutions. By appropriately combining

known solutions to the subproblems, we show that all published concurrency

control algorithms and many new ones can be constructed. The glue that

binds the subproblems and solutions together is a mathematical theory known
44

as serializability theory.

This paper does not assune previous knowledge of distributed database

concurrency control algorithms, and is suitable for both the uninitiated

.-.3. 2.:

and the cognoscente.

-4, .-..

.1%

%.'..

4...:.,

.,.-, V . -X " ,'

-6- -

1. XNTNUC"TION

A distributed database system (DDBS) is a database system (DBS) that

provides commands to read and write data that is stored at multiple sites A'

of a network. If users access a DDBS concurrently, they may interfere with .

each other by attempting to read and/or write the same data. Concurrency

control is the activity of preventing such behavior.

Dozens of algorithms that solve the DDES concurrency control problem

have been published (see [BG1} and the references). Unfortunately, many

of these algorithms are so complex that only an expert can understand them.

To remedy this situation, we have developed a simple framework for

understanding concurrency control algorithms. The framework decomposes

the problem into subproblems and gives basic techniques for solving each

subproblem. To understand a published algorithm, one first identifies the

technique used for each subproblem and then checks that the techniques are

appropriately combined. The framework can also be used to develop new

algorithms by combining existing techniques in new ways.

The paper has 10 sections. Sections 2 and 3 set the stage by

describing a simple DDBS architecture and sketching the framework in terms

of the architecture. The framework itself appears in Sections 4-B.

Section 9 uses the framework to explain several published algorithms.

Section 10 is the conclusion.

This paper refines an earlier survey of concurrency control algorithms

[BG1]. The earlier paper includes many technical details that are omitted

here. We urge the interested reader to consult [BG1] for more details.

4.°

,24.°'

-. .'

-7-

2. DISTRIBUTED DSS ARCHITECTURE

We use a simple model of DDBS structure and behavior. The model

highlights those aspects of a DDBS that are important for understanding

concurrency control, while hiding details that don't affect concurrency

control.

A database consists of a set of data items, denoted {...,x,y,zl. In I
practice, a data item can be file, record, page, etc. But for the purposes

of this paper, it's best to think of a data item as a simple variabLe. For

now, assume each data item is stored at exactly one site.

Users access data items by issuing Read and Write operations. Read Cx)

returns the current value of x. Write(x,new value) updates the current

value of x to new-value.

Users interact with the DDBS by executing programs called transactions.

A transaction only interacts with the outside world by issuing Reads and

Writes to the DDBS or by doing terminal I/0. We assume that every trans-

9 .action is a complete and correct computation; each transaction, if executed rX
0.

X.- alone on an initially consistent database, would terminate, produce correct

results, and leave the database consistent.

Each site of a DDBS runs one or more of the following software modules

(see figures 1 and 2): a transaction manager (TM), a data manager (DM) or

a scheduler. Transactions talk to TM's; TM's talk to schedulers; schedulers

talk among themselves and also talk to DMI's and MI's manage the data.

r 4." Each transaction issues all of its Reads and Writes to a single T14.•

A transaction also issues a Begin operation to its TM when it starts
executing and an wd when it's finished. Il

The TM forwards each Read and Write to a scheduler. (Which scheduler

depends on the concurrency control algorithmi usually, the scheduler is at

. . . 4°.--

... ,,..o..,,;,.:..:..,....,....,......... -.- .. °.. .

- -J- .3F-b .3.-, ..3 'U a T 7 - .T -. . .A -.-T.7-7 7.1 . -. .A-

transaction

TMansaction

transaction

transaction

tMrShesactiondat

transaction

* . Figure1

DDBS ArchitectUre

00..v

-9-

Trwasation

Begin

Write Cy) ____

End

Scheduler D

Figre.

Prcsin prain

'St

-_P- -.- "- ..

-10-

the same site as the data being read or written. In some algorithms, "

begins and Ends are also sent to schedulers.)

The scheduler controls the order in which DM's process Reads and

Writes. When a scheduler receives a Read or Write operation, it can

either output the operation right away (usually to a DM, sometimes to

another scheduler), deZay the operation by holding it for later action, or

reject the operation. A rejection causes the system to abort the trans-

action that issued the operation: every Write processed on behalf of the

transaction is undone (restoring the old value of the data item), and

every transaction that read a value written by the aborted transaction is

also aborted. This phenomenon of one abort triggering other aborts is

called cascading abcrts. (It is usually avoided in commercial DBS's by

not allowing a transaction to read another transaction's output until the

DBS is certain that the latter transaction will not abort. In this paper,

we will not try to prevent cascading aborts.) This paper does not discuss ".

techniques for implementing abort. See [GMBL, HS, LS].

The DM executes each Read and Write it receives. For Read, the DM

looks in its local database and returns the requested value. For Write,

the DM modifies its local database and returns an acknowledgment. The DM

sends the returned value or acknowledgment to the scheduler, which relays

it back to the TM, which relays it back to the transaction. 2
DM's do not necessarily execute operations first-come-first-served.

If a Dli receives a Read(x) and a Write(x) at about the same time, the

IN is free to execute these operations in either order. If the order

matters (as it probably does in this case), it is the scheduler's responsi-

bility to enforce the order. This is done by using a hio's '"ing communica-

tion discipline between schedulers and DM's (see figure 3): if the A
Los .. _4#0

7o execute Read (x) on behalf of transaction 1

followed by Write(x) on behalf of transaction 2

Scheduler D.

send Read(x)

receive Read(x)
execute Read(x)
send value

receive value
send Write(x)

receive Write(x)
execute Write(x)
send ask

Figure 3

Handshaking

scheduler wants Read x) to be executed before Write x), it sends

Read(x) to the VM, waits for the DM's response, and then sends Write(x).

Thus the scheduler doesn't even send Write(x) to the DM until it knows

Read(x) was executed. Of course, when the execution order doesn't matter,

the scheduler can send operations without the handshake.

Handshaking is also used between other modules when execution order

is important.

.. . .-

F~-0

AAA-'-A'L

-13-

3. THE FRAMEWORK -

The DDBS modules most important to concurrency control are schedulers.

A concurrency control algorithm consists of some number of schedulers, running

some type of scheduling algorithm, in a centralized or distributed fashion.

In addition, the concurrency control algorithm must handle "replicated

data" somehow. (TM's often handle this problem.)

To understand a concurrency control algorithm using our framework one

determines

(i) the type of scheduZing aZgoritlvn used (discussed in Sections

5 and 8),

(ii) the Zocation of the acheduler(8), i.e. centralized vs.

distributed (Section 6), and

(iii) how replicated data is handled (Section 7).

The framework also includes rules that tell when a concurrency control

algorithm is correct. These rules give precise conditions under which a

DDBS produces correct executions. These rules, called Bervializabi Zity

theory, are discussed in the next section.

.. o o

-°

-*..L

-14-

4. SERIALIZABILITY THEORY

Serializability theory is a collection of mathematical rules that tell

whether a concurrency control algorithm works correctly [BSW, Casa, EGLT,

Papa, PBR, SLR]. Serializability theory does its job by looking at the

executions allowed by the concurrency control algorithm. The theory gives

a precise condition under which an execution is correct. A concurrency

control algorithm is then judged to be correct if all of its executions

are correct.

4.1 Log

A "Serializability theory models executions by a construct called a log.

-A log identifies the Read and Write operations executed on behalf of each

transaction, and tells the order in which those operations were executed.'

Following Lamport, we allow an execution order to be a partial order [Lamp]".

A transaction Zog represents an allowable execution of a single trans-

action. Formally, a transaction log is a partially ordered set (poset)

Ti - (Zi,<i) where Z. is the set of Reads and Writes issued by (an

execution of) transaction i, and <i tells the order in which those
1

operations must be executed. We write transaction logs as diagrams.

r1 Ix] .--...
S= .wlix] -..

rr 1 [z] -'-"

T1 represents a transaction that reads x and z in parallel, and then

writes x. (Presumably, the value written depends on the values read.)

Let "T- {T0 ,...,TnI be a set of transaction logs. A DDBS Log (or

simply a Zog) over T represents an execution of To#,...,Tn . Formally, a

log over T is a poset L- (Z,<) where
4- '

1.ZUn Zi, and

2. '=U <
1-0 1

Conditions (1) states that the DDBS executed all, and only, the operations

submitted by Too ... Tn Condition (2) states that the DDBS honored all

operation orderings stipulated by the transactions.

The following are all possible logs over the example transaction log -

T from above. ~

(1)r [x[x

r1 (z))

(2) W X
r [z)

r [x]

(3) W1 Is

Notice that the DDBS is not required to process Read(x) and Read(z) in

* .parallel, even though T1 allows this parallellism. However, the DDBS

is not allowed to reverse or eliminate any ordering stipulated by T.

The following is not a log overT

r 1 x

*(4) w 1 x

r (z]

because it reverses the order in which T reads and writes x.

• .-, -.- . .:.r r

% -16-

There is one further constraint on the form of logs. Two operations

oonfiot if they operate on the same data item and (at least) one of them

i S a Write. To ensure that logs represent unique computations, we require

that all pairs of conflicting operations be ordered. This constraint

applies to transaction logs as well as DDBS logs.

We use ri[x] (resp., wi[x]) to denote a Read (resp., Write) on x

issued by Ti. To keep this notation unambiguous, we assume that no trans-

action reads or writes a data item more than once.

Given transaction logs

wo[X] r [x]

01
TO - w~ty] T1 - wltx] i::

0 0Z r [z)w0 [z] 1lz --

w [y]

T r [x] w [y] T r z]
2 2 2 3 3

..N~w [z]

the following is a log over {T ,T1T T I

01 2 3

r [x]

w0 [x] w [x"
0

r1]
] w.-y]

w 14-]z
w II

(Note that orderings implied by transitivity are usually not drawn. E.g.

w 0 [y] <w 2(y) and w2 [y] <w3 y].)"

S.. , ..

- - - -- - - W726 -i ~ - .°w *• . o0 . . * .k,. . % .. . o , - - . .-.. . -. * * .* o o . • .

-17-

J..

4.2 Log Equivalence

Let L be a log over some set T, and suppose wi[x] and r jx1 are

operations in L. We say rj [xl Mad-fram w[x] if w Exl <r Ex and

no wk[xl falls between r [xJ and wj[x). In this log

":.a w0 [xj r1Lxj w2 ixj r3 [xj r 4 [xj

r Ix] reads-from w0 [x), and r3[x) and r4[x) read-from w2 1xJ. We

call wjx] a finaZ-urite in L if no wklXl follows it. In this logA.

0 [x) *w 1 x] -w 2 [y) r2 [y

" [x] and w2 [y) are final-writes.

Intuitively, two logs over T are equivalent if they represent the same

computation. Formally, two logs over T are equivalent if

(1) each Read reads-from the same Write in both logs, and

(2) they have the same final-writes.

Condition (1) ensures that each transaction reads the same values from the

database in each log. Condition (2) ensures that the same transaction

writes the final value of a given data item in both logs.

The following log L2 is equivalent to log L of Section 4.2.

2 w[XW0 [y]w0 [z r 2 xw 2 [y r 1 [x] r 1 [z]w [x]r 3 [z] w3 [yw 3]

(When we write a log as a sequence, e.g. L2 , we mean that the log is totally

.*- . ordered: each operation precedes the next one and all subsequent ones in .-

. the sequence. Thus, in L2 , wo[x) <w 0 [y] <w 0 [z] <r 2 x] . .) h."

. . . , .• .-. ° -" , • - - "- . . . " - . . - . - - , " -" ." " " -- . ' , - % - % '

a_-18- -

4.3 Serializable Los

A aeriaZ Zog is a total order on E such that for every pair of

transactions T. and Ti. either all of Ti's operations precede all of

T ls, or vice versa (e.g., L2 in Section 4.2). A serial log represents

an execution in which there is no concurrency whatsoever; each transaction

executes from beginning to end before the next transaction begins. From

the point of view of concurrency control, therefore, every serial log

represents an obviously correct execution.

What other logs represent correct executions? From the point of view

of concurrency control, a correct execution is one in which concurrency

is invisible. That is, an execution is correct if it is equivalent to an

execution in which there is no concurrency. Serial logs represent the

latter executions, and so a correct Zog is any log equivalent to a serial

log. Such logs are termed seriaZiz-Ze (SR). Log L1 of Sec. 4.1 is SR,

because it is equivalent to serial log L2 of Sec. 4.2. Therefore L is

a correct log.

Serializability theory is the study of serializable logs.

4.4 The Serializability Theorem

This section presents the main theorem of serializability theory. Later

sections rely on this theorem to analyze concurrency control algorithms.

This theorem uses a graph derived from a log, called a serialization graph.

V Suppose L is a log over {To,... ,T). The 8eri4Zisation graph for

L, SG(L), is a directed graph whose nodes are T0, .. ITn and whose edges-

__ are all Ti Tj such that, for some x, either i) ri[x] <w [x], or.Z

(ii) wi [x) <r [x, or (iii) wi x] wj [x]. The serialization graphs for

.......................................,,-......-........ -... -. .°-° .

,I
'
,t l " _

•
°°-° - ° ." " . " "-".." ." A . . " --. .- ' . - .,% - . . ". . .

7.77 77.- IrIV 1..- - -. ...

-19-

example log L1 is

SG(L) -T T3

2

Edge T0 T1 is present because w 0 xI <r [x. Edge T2 T1 is caused

by r2 [x] <w [x]. Edge T2 4T 3 arises from w2 [y] <w3 [y). And so forth.
2 2 3

SERIALIZABILITY THEOREM. If SG (L) ia aoyoZio then L is SR. .

For example, since SG(L 1) is acyclic, L1 is SR.

We can also use the Serializability Theorem to determine if a echedu"Zer

produces SR logs. First, we characterize the logs produced by the scheduler.

Then we prove that every such log has an acyclic SG CBSW, Papal.

Some concurrency control algorithms schedule read-write conflicts

separately from write-write conflicts. It is easier to analyze such algo-

rithms using a restatement of the Serializability Theorem. Define the

read-write seriaZization graph for L, SGrw(L), as follows: SG (L) has
rw rw

nodes T0 ,... ITn and edges Ti -T. such that, for some x, either

i) riEx] <w[x], or (ii) wi[x] <r[x. In other words, SGrw(L) is like

SG(L) except we don't care about write-write conflicts. The Write-write

seriaZization graph for L, SG (L), is defined analogously: the nodes areww

To,...T n , and the edges are T i*T such that, for some x, wi[x] <w ix].

T T

SC (L) T !e- T SG (L) T - T
rw1 0 3 ww 1 m 0 .~. 3

2 2 - -

Of course, SG (L) SG (L) U SGw CL) .

- •.

• --... --.'_,'

- --20-

RESTATED SERIALIZABILITY THEOREM [SG13. If the foZ7~owing four
.0

oondition. hold, then L is SR

(i) SG CL) is acyoLic.

(ii) SG (L) is acyoZio.

(iii) For aZZ Ti and T if T i precedes T. in SG rwL) then

either Ti precedes T in SG L), or there is no path

between them in SG wwL).

(iv) For aZZ Ti a TV3 if Ti precedes T in SG L) then
and jww

either T, precedes Tj in SGr WL), or there is no path

between them in SGrw L). a

Conditions (i)-eiv) are just another way of saying that SG(L) is

acyclic. The conditions allow us to analyze the correctness of read-write

(rwi scheduling almost independently of write-virte (w) scheduling.

' %

. .,.,.... - h..

-. *

-**-*-o.*v . .'

.. ..

-21-

5. SCHEDULERS

There are four types of schedulers for producing SR executions: two-

phase locking, timestamp ordering, serialization graph checking and

certifiers. Each type of scheduler can be used to schedule rv conflicts,

ww conflicts, or both. This section describes each type of scheduler

assuming it is used for both kinds of conflict. Ways of combining scheduler

types (e.g. two-phase locking for rw conflicts and timestamp ordering

for ww conflicts) are described in Section 9. This section also assumes

that the scheduler runs at a single site, see figure 4; Section 5 lifts

this restriction.

5.1 Two-Phase Locking

A two-phase locking (2PL) scheduler is defined by three rules [EGLT):

i. Before outputting r. [x] (resp. w [x]), set a read-lock (resp.

write-lock) for Ti on x. The lock must be held (at least)

until the operation is executed by the appropriate DM. (Hand-

shaking can be used to guarantee that locks are held long enough.)

ii. Different transactions cannot simultaneously hold "conflicting"

locks. Two locks confUct if they are on the same data item and

(at least) one is a write-lock. If rw and ww scheduling is

done separately, the definition of "conflict" is modified. For

rw scheduling, two locks on the same data item conflict if

exactZy one is a write-lock; i.e., write-locks don't conflict

with each other. For ww scheduling, both locks must be write-locks.

iii. After releasing a lock, a transaction cannot obtain any more locks.

......................... .
• 'b .,',, .. ' .'.., . , • ".". " .- • . -.•. -- J " . l,." , i \ 1•,-,,, . C-,° . ,- , ". . .° . .- . . ."

-22-

trnscto

TM 4..at

transaction

TM DM!4ata

* -transaction"-

Fiur 4'

DDSAciecueWt Cnrlzd ceue

-23-

Rule (iii) causes locks to be obtained in a two-phase manner. During

its growing phase, a transaction obtains locks without releasing any. By

releasing a lock, the transaction enters its shrinking phase during which

it can only release locks. Rule (iii) is usually implemented by holding

all of a transaction's locks until it terminates.

2PL THEOREM. A 2PL schedaZer onZy produces SR Zogs.
- - -O

Proof Sketch. Consider a log L produced by a 2PL scheduler. If

T.- T. is in SG(L), then T. released some lock before T. obtained

that lock. If there's a nonempty path in SG(L) from T. to T. (i.e.,

a cycle) then, by transitivity, T. released a lock before T. obtained

some lock, thereby breaking rule (iii). So, SG(L) is acyclic. By the

Serializability Theorem, this implies that L is SR. 0

Due to rule (ii), an operation received by a scheduler may be delayed

because another transaction already owns a conflicting lock. Such blocking

situations can lead to deadlock. For example, suppose rlIx) and r2 [y]

set read-locks, and then the scheduler receives w [y] and w2 [x). The

scheduler cannot set the write-lock needed by w [y] because T2 holds a
2.

read-lock on y. Nor can it set the write-lock for w2[x] because T
holds a read-lock on x. And, neither T1 nor T2 can release its read-

lock before getting the needed write-lock because of rule (iii). Hence,

*i we have a deadlock: T1 is waiting for T2 which is waiting for T.

Deadlocks can be characterized by a waits-for graph [Holt, KC], a

directed graph whose nodes represent transactions and whose edges represent

waiting relationships: edge Ti-T. means Ti is waiting for a lock -O

owned by T A deadlock exists if and only if (iff) the waits-for graph

has a cycle. E.g., in the above example the waits-for graph is

--. '

i ..' . .

-24-

A popular way of handling deadlock is to maintain the waits-for graph

and periodically search it for cycles. (See [Chap. 5, AHU] for cycle

detection algorithms.) When a deadlock is detected, one of the trans-

actions on the cycle is aborted and restarted, thereby breaking the dead-

lock.

'7

5.2 Timestamp Ordering

In timestamp ordering (T/0) each transaction is assigned a globally

unique timestamp by its TM. (See [BGI, Thom] for how this is done.) The

TM attaches the timestamp to all operations issued by the transaction. A

T/O scheduler is defined by a single rule: Output all pairs of conflicting

operations in timestamp order. Make sure conflicting operations are

executed by DMs in the order they were output. (Handshaking can be used

to make sure of this.) As for 2PL, the definition of "conflicting operation"

is modified, if rw and ww scheduling are done separately.

T/O THEOREM. A T/O 8chedluler onZy produce8 SR Zoge.

Proof Sketch. Since every pair of conflicting operations is in time-

stamp order, each edge Ti*T in SG has TS(Ti) <TS(T.)

(where TS(Ti) is the timestamp of Ti). Thus, SG cannot have any cycles.

So, by the Serializability Theorem, the log produced by the scheduler is

SR. . '

Several varieties of T/O schedulers have been proposed. Ve only sketch

these variations here. Full details appear in [BGI].

-. xV

17. P. ITIOZ7.i-

-25-

A ba8ei T/O scheduler outputs operations in essentially first-come-

first-served order, as long as the T/O scheduling rule holds. When the

scheduler receives r ix] it does the following.

if TS(i) < largest timestamp of any Write on x yet "accepted"

then reject ri[x]

else "accept" ri[X] and output it as soon as all Writes on x with

smaller timestamp have been acknowledged by the DM.

When the scheduler receives w. x] it behaves as follows.

if TSi) <largest timestamp of any Read or Write on x yet "accepted"

then reject wi[x]

else "accept" w. [x] and output it as soon as all Reads and Writes on

x with smaller timestamp have been acknowledged by the DM.

A conservative T/O scheduler avoids rejections by delaying operations

instead. An operation is delayed until the scheduler is sure that outputting

it will cause no future operations to be rejected. Conservative T/O requires

that each scheduler receive Reads and Writes from each TM in timestamp order.

To output any operation, the scheduler must have an operation from each TM

in its "input queue." The scheduler then "accepts" the operation with

smallest timestamp. "Accept" means remove the operation from the input

queue, and output it as soon as all conflicting operations with smaller

timestamp have been acknowledged by the DM. Variations on conservative

T/O are discussed in IBGl, BSR].

Basic T/O and conservative T/O are endpoints of a spectrum. Basic

T/O delays operations very little, but tends to reject many operations.

Conservative T/O never rejects operations, but tends to delay them a lot.

One can imagine T/O schedulers between these extremes. To our knowledge,

no one has yet proposed such a scheduler.
• --'.

-26-

Thc a 'awrite ruZe (WR) is a technique that reduces delay and

rejection [Thom]. TWR can only be used to schedule Writes, and needs to

be combined with basic or conservative T/O to yield a complete scheduler.

If we're only interested in ww scheduling, TWR is simple. When the scheduler

receives w i[x] it does the following.

if TS(i) < largest timestamp of any Write or x yet "accepted"

then "pretend" to execute w.[x]--i.e., send an acknowledgement
1

back to the TM, but don't send the Write to the DM

else "accept" w. [x] and process it as usual.
1

The basic T/O-TWR combination works like this. Reads are processed

exactly as in basic T/O. But when the scheduler receives a wi [xJ, it

combines the basic T/O rule and TWR as follows.

-'- if TS(i) < largest timestamp of any Read

rw scheduling
on x yet "accepted" (c.- ".-.(basic T/0)-

then reject wi [x]

else if TS(i) < largest timestamp of any Write

ww scheduling
on x yet "accepted" (TWR)

then "pretend" to execute W. [x]
1

else "accept" the w. [x] and output it as soon as all operations

on x with smaller timestamp has been acknowledge by the DM.

" The conservative T/O-TWR combination is described in [BG].-

, V 5.3 Serialization Graph Checking

.A This type of scheduler works by explicitly building a serialization

graph, SG, and checking it for cycles. Like basic T/0, an SG checking -

scheduler never delays an operation (except for handshaking reasons).

Rejection is the only action used to avoid incorrect logs.

A .. . -. '.

," . " ' . . .' .-. .''. ' .' .- - . '. - "-. -. . '- - ' - -" . ' ' , - ' - . '- .- - . ' ...S

-27-
.°

AnS hcigshdlr i eie by the foowing ru.u,.o

1. When transaction T. Begins, add node T to SG.

ii. When a Read or Write from T. is received, add all edges T.- T.
1 "-i 1

o

K,_,such that T is a node of SG, and the scheduler has already output a

conflicting operation from T.. As for the previous schedulers, the

definition of "conflicting operation" is modified if rw and ww conflicts

are scheduled separately.

iii. If after step (ii) SG is still acyclic, output the operation.

Make sure that conflicting operations are executed by DM's in the order they

were output. (Handshaking can be used for this.)

iv. If after (ii) SG has become cyclic, reject the operation. Delete

node T. and all edges T.--T. or T.-*T. from SG. (SG is now acyclic

again.)

SG CHECKER THEOREM. An SG checking scheduZer only produces SR logs.

Proof sketch. Every log produced by the scheduler has an acyclic SG.

So, by the Serializibility Theorem, every log is SR. -

One technical problem with SG checkers is that a transaction must

remain in SG even after it has terminated. A transaction can only be

deleted from SG when it is a source node of the graph, i.e., when it has

no incoming edges. See [Casa] for a discussion of this problem and

techniques for efficiently encoding information about terminated trans- :4

actions that remain in SG.

.' % " '.°

-p~~ M -:7 1," . .-

-28- ..

5.4 Certifiers

The term "certifier" refers to a scheduling philosophy, not a specific

scheduling rule. A certifier is a scheduler that makes its decisions on a

per-transaction basis. When a certifier receives an operation, it inter- @1

nally stores information about the operation and outputs it as soon as all

earlier conflicting operations have been acknowledged. When a transaction

ends, its TM sends the End operation to the certifier. At this point, the

" ... certifier checks its stored information to see if the transaction executed

serializably. If it did, the certifier certifies the transaction, allowing

it to terminate; otherwise, the certifier aborts the transaction.

All of the earlier schedulers can be adapted to work as certifiers.

Here is an SG checking certifier. When the certifier receives an operation,

it adds a node and some edges to SG as explained in the previous section.

The certifier does not check for cycles at this time. When a transaction,

T., ends, the certifier checks SG for cycles. If T. does not lie on a

cycle, it is certified; otherwise it is aborted.

SG CERTIFIER THEOREM. An SG checking certifier onZy produces SR Zogs.

Proof sketch. Consider any "completed" log produced by the certifier. -4

Comped means that all uncertified transactions are aborted and removed - ,

from the log. (As always, any transaction that read data written by an

aborted transaction is also aborted; this may include some certified

transaction.) The completed log has an acyclic serialization graph. So

by the Serializability Theorem, the log is SR. 0-

Here is a 2PL certifier [Thorn, KR]. Define a transaction to be active

from the time the certifier receives its first operation until the certifier

V.- .- . . p.-.

";" "'"'": -. . '. . "'. .''.-'': .''..''..' "'.''-.'.''..''-." '..'',-""-.'" ,'', ,,"" ," .""..".. . . ."-"."". "" ,"".". " " ""..-

-29-

processes its End. The certifier stores two sets for each active trans-

action T

T.'s readset, RS(i) ={xthe certifier has output r[x].;

Ti's writeset, WS(i)- {xlthe certifier has output wi[xJ. e
The certifier updates these sets as it receives operations. When the

certifier receives End,, it runs the following test.

Let RS(active) - U(RS(j), such that T. is active, but J#i)
°3

WS(active) - U(WS(J), such that T. is active, but jvi)

if RS (i) nWS(active) i 0, or

Ws (i) n (RS (active) U WS (active)) .0

then certify T.

else abort T..m1

This amounts to pretending that transactions hold imaginary locks on

their readsets and writesets. When transaction T. ends, the certifier
1

sees if Ti's imaginary locks conflict with the imaginary locks held by

other active transactions. If there is no conflict, Ti is certified; else

' T. is aborted.

2PL CERTIFIER THEOREM. A 2PL certifier onZy produce8 SR Zogs.

Proof sketch. Consider a completed log L produced by the certifier.

If T -*T. is in SG(L), then since both T. and T were certified, the
i-,1tj

certifier processed End. before End . If there's a nonempty path in

SGIL) from T to T (i.e., a cycle.) then, by transitivity, the .:

certifier processed Endi before Endi. This is absurd. So, SG(L) is

a . cyclic, and by the Serializability Theorem, L is SR. 0

Mdb-i
.?.

-30-

"- T/O certifiers are also possible. To our knowledge, no one has

~~proposed this algorit€hm yet. :

.Certifers can also b built that check for serializable executions -.

during transactions' executions, not just at the end. The extra version

of this idea is to check for serializability on every operation. At this

extreme, the certifier reduces to a "normal" scheduler.

I"

..

%-.

K 'es-
~', .

::).;....:.-

- .:;. -9j. ,"~~ > -.'

r-
°

• ' .. ---..-.- . - , .. ~ j -

-31-

6. SCHEDULER LOCATION

The schedulers of Sect:on 5 can be modified to work in a distributed

manner. Instead of one scieduler for the whole system, we now assme one

scheduler per DM (refer back to figure 1). The scheduler normally runs at

-.-. " the same site as the DM, and schedules all operations that the DM executes.

.. The new issue in this setting is that the distributed schedulers must

cooperate to attain the scheduling rules of Section 5.

The main problem caused by distributing schedulers is the maintenanceS::-.*-

of global data structures. Distributed 2PL schedulers need a global

waits-for graph. Distributed SG checkers need a global SG. In distributed

T/O scheduling, no global data structures are needed; each scheduler can

make its scheduling decisions using local copies of R-TS(x) and W-TS(x)

for each x at its DM. Distributed certifiers generally manifest the-' - .. ,..

same problems as their corresponding schedulers.

6.1 Distributed Two Phase Locking

Refer to the 2PL scheduling rules of Section 5.1. Rules (i) and (ii)

are "local." The scheduler for data item x schedules all operations on

x. Hence this scheduler can set all locks on x. Rule (iii) requires a

small amount of inter-scheduler cooperation: no scheduler can obtain a

lock for transaction Ti after any scheduler releases a lock for Ti.

This can be done by handshaking between TMs and schedulers. When T.

-nds, its TM waits until all of Ti's Reads and Writes are acknowledged.

At this point the TM knows that all of T. s locks are set, and it's safe

to release locks. The TM forwards End i to the schedulers which then i1

release T.'s locks.

.0u d'<~~
' " ' " i- "l '* I

-32-

One problem with distributed 2PL is that multi-site deadlocks are

possible. Suppose x and y are stored at sites A and B, respectively.

Suppose r[x] is processed at A, setting a read-lock on x for Ti at

A; and r [y] is processed at B, setting a read-lock on y for T at -

* B. If w. [x] and w. [y] are now issued, a deadlock will result; T. will

be waiting for T. to release its lock on x at A and T. will be

waiting for T. to release its lock on y at B. Unfortunately, the

deadlock isn't apparent by looking at site A or B alone. Only by

taking the union of the waits-for graphs at both sites does the deadlock

cycle materialize.

See [MM, Ston, GlSh, RSL] for solutions to this problem.

6.2 Distributed Timestamp Ordering

T/O schedulers are easy to distribute, because the T/O scheduling

rule of Section 5.2 is inherently local. Consider a basic T/O scheduler

for data item x. To process an operation on x, the scheduler only needs

-*-. to know if a conflicting operation with larger timestamp has been accepted.

Since the scheduler handles all operations on x, it can make this decision

itself.

6.3 Distributed Serialization Graph Checking

.- •SG checkers are harder to distribute than the other scheduler because

the seaialization graph, SG, is inherently global. A transaction that

accesses data at a single site can become involved in a cycle spanning

- many sites. See (Casa] for a discussion of this problem.

...-. %

-..).. .

" -. " - .' -- ,.- "- - .- '- , 4 4 4I-- -- -- . - - ---. - " .- - .- °- .. - "- -'- - -?> " .- .- -" " -

- .. T.. -7. -

-33- - .

6.4 Distributed Certifiers

Distributed certifiers have a synchronization requirement a little like

rule (iii) of 2PL: Ti's TM must not send Endi to any certifier, until

all of Ti's Reads and Writes have been acknowledged. I.e., we must not

try to certify Ti at any site until we are ready to certify Ti at all

sites.

Beyond this, each distributed certifier behaves like the corresponding

scheduler. A distributed 2PL certifier needs little inter-scheduler

cooperation (beyond the previous paragraph). The certifier at each site

keeps track of the data items at its 8ite read or written by active trans-

actions. When the certifier at site A receives End1 it sees if any active

transaction conflicts with T. at site A. If not, T. is oertified at2. 1

site A. If Ti is certified at all sites at which it accessed data,

then it is "really" certified; else T. is aborted.
.1

A distributed SG certifier shares the problems of distributed SG

schedulers: the certifier needs to check for cycles in a global graph

every time a transaction ends.

6.5 Other Architectures

Centralized and distributed scheduling are endpoints of a spectrum. One

can imagine hybrid architectures with multiple DM's per scheduler. See

figure 5. This architecture adds no technical issues beyond those already

discusegd.

HJerarchical scheduler architectures are also possible. See figure 6.

To our knowledge, no one has studied this approach yet.

7--.
r : -. , •"' '+• ." . '• '. . '- + .''. ' -' - " " " "' " ". '-" + '+ ."". ". '" "' •" .- .- 1 . . " "" -" ." " "A ', '.A

-34-

DM data

-p.-.

M Dmdat

CTM

W-

_712

TM schd he

TM sched

TMached DM

s=chedDt

sched

sched 7DM

Figure 6

Hierarchical Architecture

-36-

DATA REPLICATION

In a repZicated databa8e, each logicaZ data item, x, can have many

-.-82scaZ copies, denoted {x ,..x 1, which are resident at different1 U

M's. Transactions issue Reads and Writes on logical data items. TM's -.01

- ranslate those operations into Reads and Writes on physical data. The
, % ..'

ffect, as seen by each transaction, must be as if there were only one

opy of each data item.

There is a simple way to obtain this effect. Each TM translates
... y "*.-*.

r ix] into r Ex] for some copy x. of x and w Ex] into {w Ex]Iall

copies x. nf x}. If the scheduler(s) is SR, the effect is just like a

nonreplicated database. To see this, consider a serial log equivalent to

the SR log that executed. Since each transaction writes into all copies

of each logical data item, each ri [x J reads from the 'latest' trans-

action preceding it that wrote into any copy of x. But this is exactly

what would have happened had there been only one copy of x. (For a more

rigorous explanation, see [ABG].) Consider this example.

w •x ." ----- r t I- x

w0 [x] r lyXl w [x 1

3
0 r2 x2] w2 y1]

w0 [y 2 I a r [y 2 I w 2 y 2]

x and x2 are copies of logical data item x; y, and y2 are copies

of y. T O produces initial values for both copies of each data item. T

reads x and y, and writes x; T2 reads x and y, and writes y.

."......

-37-

3% 2
L3 is SR. It is equivalent to the following serial log:

4 [- w0 [x 1]w0 [x2 l w0 [yl]w0 [y 2] r[x Ir l yl)w xl w [x2Jr 2 [x2]r 2 [y2] w2 [y l]w2 [y2] '

Note that each Read, e.g. r2 x2] or r2 y12], reads from the 'latest' trans-

action preceding it that wrote into any copy of the data item. Therefore,

L4 has the same effect as the following log in which there is no replicated

data:

%:... L w0 [x l w0 [y l r1 [x l r1 [y l w1 [x]r 2 [x l r 2 [y Iw2[y]-

We call this the do nothing approach to replice.tion--just write into all

copies of each data item and use an SR scheduler.

Two other approaches to replication have been suggested. In the przmary

copy approach, and copy of each x, say -x , is designated its primary copy
p

[Ston]. Each TM translates r. [x3 into r. [x.] for some copy xj, as

before. Writes are translated differently, though. The TM translates

w [x] into a single Write, w. Ex 1, on the primary copy. When the primary
i i p

copy's scheduler outputs w.[x 1, it also issues Writes on the other copies ,.
,. -.. , ,..

of x (i.e., wi [x ,. .,wi [x 1). See Figure 7. These Writes are processed

by the schedulers for x.,... IXm in the usual way. For example, in 2PL,

the scheduler for x. must get a write-lock on x. for T. before out-

putting wi [x . The primary copy's scheduler may be centralized (in which

case the technique is called primary site [AD]), or distributed with the

primary, copy's DM.

Primary copy is a good idea for 2PL schedulers. It eliminates the

possibility of deadlock caused by Writes on different copies of one data

o-: . :Q K.- 4

-38-

* Transaction

B. eginTMShdlrD

writ.w ?1

End xI

Scheduler DM

Note: x is primary copy-

Figure 7

Processing writes in Primary Copy

t , A *-:.ik,,.

-39- D"

item. Suppose x has copies x and x2. Suppose T and T want
1 *T T2

to Write x at about the same time. In the do nothing approach, the

following execution is possible: T1 locks xI - T2 locks x2; T, tries
2~~~ 22 slc;T

to lock x2 but is blocked by T2Is lock; T2 tries to lock x but is

blocked by Tl's lock. This is a deadlock. Primary copy avoids this

possibility because each transaction must lock the primary copy first.

In the Voting approach to replication, TM's again distribute Writes

to all copies of each data item [Thom]. Assume we are using distributed

schedulers. When a scheduler is ready to output w.Ix. , it sends a vote

of yes to the vote coZlector for x; it does not output w [x.] at this2.-.

time. When the vote collector receives yes votes from a majority of

schedulers, it tells aZZ schedulers to output their Writes. (Each scheduler

may need to update its local data structures before outputting w [x.], e.g.
1

set a write-lock on x..) Assume each scheduler is correct (i.e., produces

an acyclic SG). Then, since every pair of conflicting operations was voted

yes by some correct scheduler (both operations got a majority of yes's), the

SG must be acyclic and the result is correct.

The principal benefit of voting is fault tolerance; it works correctly

as long as a majority of sites holding a copy of x are running. See

[Thon, Giff] for details.

* - •--

"-..) '-.-.- .)). T "-'. ,'-"-"" ." "'"-. K ... Q. -.-x.

-40-

B. MULTIVERSION DATA 0:

Let us return to a database system model where each logical data

item is stored at one DM.

In a uZtiVersion database each Write, w. [x], produces a new copy (or

version) of x, denoted x . Thus, the value of x is a set of versions.

For each Read, r.[x], the scheduler selects one of the versions of x to
1

be read. Since Writes don't overwrite each other, and since Reads can read

any version, the scheduler has more flexibility in controlling the effective

order of Reads and Writes.

Although the database has multiple versions, users expect their trans-

actions to behave as if there were just one copy of each data item. Serial

logs don't always behave this way. For example,

r0 [0] [1 1 0 1 2
w0 [x]r I N wN y l]r2 [x y]w2 [y

is a serial log, but its behavior cannot be reproduced with only one copy tw

of x. We must therefore restrict the set of allowable serial logs.

A serial log is 1-copy seriaZ (or 1-6erlaZ) if each r. [x reads

from the last transaction preceding it that wrote into any version of x.

The above log is not 1-serial, because r2 reads x from w0 , but

0 1 0w0 [x] <wl[x] <r 2 [x]. A log is 1-seriaZizable (1-SR) if it's equivalent

to a 1-serial log. 1-serializability is our correctness criterion for

multiversion database systems.

All multiversion concurrency control algorithms (that we know of)

totally order the versions of each data item in some simple way. A

version order, <<, for L is an order relation over versions such that,

for each x, << totally orders the versions of x.

%S.,.........

. -...... .. . , -... . .- ".-..--. -.-- ' ,

-Z-7I

-41- -.

Given a version order <<, we define the multiversion SG w.r.t. L and
0

<< (denoted MVSG(L,<<)) as SG(L) with the following edges added:

k k
for each rixj] and wk[x I in L, if xk<<xj then include Tk4T j,-

else include T. T

MULTIVERSION THEOREM [BG3]. A muZtiversion log is 1-SR iff there

exists a version order << such that MVSG(L,<<) is acycZic. 0

- This theorem enables us to prove multiversion concurrency control

algorithms to be correct. We must argue that for every log L produced by

the algorithm, MVSG(L,<<) is acyclic for some <<.

The types of multiversion schedulers that have been proposed fall

into two classes that approximately correspond to timestamping and locking.

8.1 Multiversion Timestamping

Multiversion concurrency control was first introduced by Reed in his

multiversion timestamping method [Reed]. In Reed's algorithm, each trans-

," -action has a unique timestamp. Each Read and Write carries the timestamp

of the transaction that issued it, and each version carries the timestamp

of the transaction that wrote it. The version order is defined by xi << x- ,.

if TS(i) < TS(j).

Operations are processed first-come-first served. However, the version

selection rules ensure that the overall effect is as if operations were

Note that two operations conflict (and produce an edge in SG(L)) if they
operate on the same version and one of them is a write.

Handshaking is used to ensure that logically conflicting operations are -
executed by DMIs in the order the scheduler output them.

_A...,. -:.'-,.2
• - o-.o.- .-.

-42- .

processed in timestamp order. To process r. [x], the scheduler (or DM)

returns the version of x with largest timestamp 4 TS(i). To process

wi[x], version x1 is created, unless some r [x] has already been

processed with TS(j) <TS(i) <TS(k). If this condition holds, the Write

is rejected.

An analysis of MVSG(L,<<) for any L produced by this method shows

that every edge T -T is in timestamp order (TS(i)< TS(j)). Thus

MVSG(L,<<) is acyclic, and so L is 1-SR.

8.2 Multiversion Locking

In multiversion locking, the Writes on each data item, x, must be

ordered. We define x << x if wix] <wjEx]. Each version is in the

certified or uncertified state. When a version is first written, it is

uncertified. Each Read, ri [x], reads either the last (wrt <<) certified

version of x or any uncertified version of x. When a transaction

finishes executing, the database system attempts to certify it. To certify

Ti, three conditions must hold:

Cl. For each r. [x 1, x is certified.

C2. For each w. x 1, all x << are certified.

C3. For each w. x and each x <<X all transactions that read

x have been certified.

These conditions must be tested atomically. When they hold, T. is declared

to be certified and all versions it wrote are (atomically) certified.

Ai analysis of MVSG(L,<<) for any L produced by this method shows

that every edge T. -*T is consistent with the order in which transactions

were certified. Since certification is an atomic event, the certification

. , . ,

i * - .- -. , . - - . - . % "% - -, .% . - °" o

o. • ° ° -. ~ - - ° • • . - . - ° .- ° J ..--- -, - ° - . ,- -. -. °. - .. ,-

-43-

order is a total order. Thus, MVSG(L,<<) is acyclic, and so L is

1-SR.

Two details of the algorithm require some discussion. First, the

algorithm can deadlock. For example, in this log

0 0 0 1 2
w rl[x]r2 x [NlW []w2 x] .I

T and T are deadlocked due to certification condition C3. As in 2PL,
1 2

deadlocks can be detected by cycle detection on a waits-for graph whose

edges include T. - T. such that T. is waiting for T. to become

certified (so that T. will satisfy Cl-C3).

Second, Cl-C3 can be tested atomically without using a critical

section. Once Cl or C2 is satisfied for some r [x] or w. I, no2. 1 ;-"•

future event can falsify it. When C3 becomes true for some w. Ex 1, we
1

ii"lock" x so that no future reads can read versions that precede x1 .

This allows Cl-C3 to be checked one data item at a time. Of course, the

waits-for graph must be extended to account for these new version locks.

Two similar multiversion locking algorithms have been proposed which

allow at most one uncertified version of each data item. In Stearns'

and Rosenkrantz's method [SRI, the waits-for graph is avoided by using a

timestamp-based deadlock avoidance scheme. In Bayer et al's method

.BHR, BEHR], a waits-for graph is used to help prevent deadlocks. This

algorithm consults the waits-for graph before selecting a version to read,

and always selects a version that creates no cycles.

.'. Multiversion locking algorithms in which queries (read-only trans-

actions) are given special treatment are described in (Dubo], [BG4].

V..,%%

'.:-!:-".-':.'--'--. -: -."-' " '-oi..--..--.-."-.--.-.'...'..-.....-'.-..--.--.-..--.,..--.--..-.............-....'.. "- . j'.

-44- .

..

9. COMBINING THE TECHNIQUES

The techniques described in Sections 4-8 can be combined in almost

all possible ways. The three basic scheduling techniques (2PL, T/O, SG

checking) can be used in scheduler mode or certifier mode. This gives O

six basic concurrency control techniques. Each technique can be used for

2rw or ww scheduling or both (6= 36). Schedulers can be centralized or

distributed (36 x2 -72), and replicated data can be handled in three ways

(Do Nothing, Primary Copy, Voting) (72 x 3 - 216). Then, one can use multi-

versions or not (216 x 2 - 432). By considering the multivarious variations

of each technique, the number of distinct algorithms is in the thousands. htw

To illustrate our framework, we describe some of these algorithms

that have already appeared in the literature.

The distributed locking algorithm proposed for System R*

uses a 2PL scheduler for rw and ww synchronization. The schedulers

are distributed at the DM's. Replication is handled by the do nothing

approach. ___

Distributed INGRES uses a similar locking algorithm [Ston]. The main

difference is that distributed INGRES uses primary copy for replication.

Many researchers have proposed algorithms that use conservative T/O

for all scheduling [SM, Lela, KNTH, CB]. They typically distribute the

schedulers at DM's and take the do nothing approach to replication.

SDD-I uses conservative T/O for rw scheduling and Thomas' write 40,

rule for ww scheduling. The algorithm has distributed schedulers and

takes the do nothing approach to replication [BSRI. SDD-l also uses

confZict graph analyeis, a technique for preanalyzing transactions to

determine which run-time conflicts need not be synchronized.

,.,.. -. ..,-, .. ,.- .,..*- . - -. . .. - . . - .

,, . ,' , ,, ,, ,%,. '. ." / %' . , - - '.. " . ,, " . . .- - . .-

,- -.

1.

-45-... :m

A method using 2PL for rw scheduling and Thomas' write rule for

w scheduling is described in [BGLI. Distributed schedulers and the do

nothing approach to replication were suggested. To ensure that the locking " 1
order is consistent with the timestamp order, one can use a LeTort oZock:

Each message is timestamped with the local clock time when it was sent;

if a site receives a message with a timestamp, TS, greater than its local

clock time, the site pushes its clock ahead to TS. After a transaction

obtains all of its locks, it is assigned a timestamp using the TM's local

Lamport clock.

Thomas'majority consensus algorithm was one of the first distributed

concurrency control algorithms. It uses a 2PL certifier for rw scheduling

and Thomas'write rule for ww scheduling. Schedulers are distributed and

voting is used for replication. Each transaction is assigned a timestamp

from a Lamport clock when it is certified. This ensures that the

certification order (produced by rw scheduling) is consistent with the

timestamp order used for ww scheduling.

Each of these algorithms is quite complex. A complete treatment of

each would be lengthy. Yet by understanding the basic techniques and how 2
they can be correctly combined, we can explain the essentials of each

algorithm in a few sentences.

*.-:

_ _

-46- -

10. PERFORMANCE

Given that thousands of concurrency control algorithms are conceivable,

which one is best for each type of application? Every concurrency control

algorithm delays and/or aborts some transactions, when conflicting operations

are submitted concurrently. The question is: which algorithms increase

overall transaction response time the least?

Although there have been several performance studies of some of these

algorithms, the results are still inconclusive IGS, GMI, GM2, Lin, LNJ.

There is some evidence that 2PL schedulers perform well at low to moderate

intensity of conflicting operations. However, we know of no quantitative

results that tell when 2PL thrashes due to too many deadlocks. There are

similar gaps in our understanding of the performance of other types of

schedulers. More analysis is badly needed to help us learn how to predi-ct

-. which concurrency control algorithms will perform well for the applications

and systems we will encounter in practice.

m

,...°

=r'I

:i~ipi.

~~~. .• . .... ,-. ..... . . . . . .. .. % -



-47- -9

RmERENCES

[AD) Alsberg, P.A. and Day, J.D. "A Principle for Resilient Sharing of
• ."Distributed Resources," Proc. 2nd Int. Conference on Software

Engineering, October 1976.

"AHU)] Aho, A.V., Hopcroft, E., Ullman, J.D. The Design and AnaZysis of
Corputer AZgorithms, Addison-Wesley Publishing Co. (1975).

[ABG] Attar, R., P.A. Bernstein, and N. Goodman. "Site Initialization,
Recovery, and Backup in a Distributed Database System," Proc. 1982
BerkeZey Workshop on Distributed Databases and Computer Networks.

(Badal] Badal, D.Z. "Correctness of Concurrency Control and Implications
.- in Distributed Databases," Proc. COAPSAC 79 Conf., Chicago, Nov.

1979.

[BEHR] Bayer, R., E. Elhardt, H. Heller, and A. Reiser. "Distributed
Concurrency Control in Database Systems," Proc. Sixth Int. Conf.
on Very Large Data Bases, IEEE, N.Y., 1980, pp. 275-284.

[BHR] Bayer, R., H. Heller, and A. Reiser. "Parallelism and Recovery in
Database Systems," ACM Trans. on Database Sys. 5, 2 (June 1980),
pp. 139-156.

[BGI] Bernstein, P.A. and N. Goodman, "Concurrency Control in Distributed
Database Systems," Cmputing Surveys 13, 2 (June 1981), pp. 185-221.

[BG2] Bernstein, P.A. and N. Goodman. "Concurrency Control Algorithms for
Multiversion Database Systems," submitted for publication.

[BGL] Bernstein, P.A., N. Goodman, and M.Y. Lai. "A Two-Part Proof
Schema for Database Concurrency Control," Proc. 1981 BerkeZe.
Workshop on Distributed Databases and Computer Networks.

[BRGP] Bernstein, P.A., Rothnie, J.B., Goodman, N., and Papadimitriou, C.H.
"The Concurrency Control Mechanism of SDD-l: A System for
Distributed DatabasLs (The Fully Redundant Case)," IEEE Trans. on
Software Engineering, Vol. SE-4, No. 3 (May 1978). "2

[BS2) Bernstein, P.A. and Shipman, D. "The Correctness of Concurrency
Mechanisms in a System for Distributed Databases (SDD-)," ACM"
Trans. on Database Systems, Vol. 5, No. 1, March 1980.

[BSRj Bernstein, P.A., Shipman, D., and Rothnie, J. "Concurrency
Control in a System for Distributed Databases (SDD-)," ACA
Tran. on Database Systems, Vol. 5, No. 1, March 1980. '-41

"-,,- -'- , ' "- , ". -- '.-" ... . ". . .-. ." ." . -. .' ..- . . ... ., ". " . " '



* .*

-48-

[BSW] Bernstein, P.A., Shipman D.W., and Wong, W.S. "Formal Aspects of
Serializability in Database Concurrency Control," IEEE Trans. on
Software Engineering, Vol. SE-5, No. 3, May 1979.

[Casa] Casanova, M.A. The Concurrency Control Problem of Database
Systems, Lecture Notes in Computer Science, Vol. 116, Springer-
Verlag, 19bi (originally published as TR-17-79, Center for Research " .-
in Computing Technology, Harvard University, 1979). '0

[CB] Cheng, W.K., and G.C. Belford. "Update Synchronization in
Distributed Databases," Proc. 6th Int. Conf. on Very Large Data
Bases, Oct. 1980.

[Dubo] DuBourdieu, D.J., "Implementation of Distributed Transactions,"
Proc. 1982 Berkeley Workshop on Distributed Data Management and
Computer Networks, pp. 81-94.

[Ellis] Ellis, C.A. "A Robust Algorithm for Updating Duplicate Databases,"
Proc. 2nd Berkeley Workshop on Distributed Databases and Computer
Networks, May 1977. tr.I

(EGLT] Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L. "The
Notions of Consistency and Predicate Locks in a Database Systems,"
Coimnunications of the ACM, Vol. 19, No. 11, November 1976.

[G-Ml] Garcia-Molina, H. "Performance Comparisons of Two Update Algorithms
for Distributed Databases," Proc. 3rd Berkeley Workshop on Distributed
Databases and Computer Networks, August 1978.

[G-M2] Garcia-Molina, H. "Performance of Update Algorithms for Replicated 2:-"
Data in a Distributed Database," Ph.D. Dissertation, Computer --

Science Department, Stanford University, June 1979.

[G-M3] Garcia-Molina, H. Stanford University, Stanford, California. "A

Concurrency Control Mechanism for Distributed Data Bases Which
Uses Centralized Locking Controllers," Proc. 4th Berkeley Conf.
on Distributed Data Management & Computer Networks, August 1979.

[GS] Gelenbe, E. and Sevcik, K. "Analysis of Update Synchronization
for Multiple Copy Databases," Proc. 3rd Berkeley Workshop on
Distributed Databases and Computer Networks, August 1978.

[GlSh] Gligor, V.D. and S.H. Shattuck, "On Deadlock Detection in Distributed
Systems," IEEE Trans. on Software Engineer'ng, Vol. SE-6, No. 5,
September 1980, pp. 435-440.

[Giff] Gifford, D.K. "Weighted Voting for Replicated Data," Proc. 7th
PSymp. on Operating Sys. Principles, ACM, N.Y., Dec. 1979.

- ...... .-..- . . . .-.. ... ". --. ..-......



[Gray] Gray, J.N.. "Notes on Database Operating Systems," Operating
Systems: An Advanced Course, Vol. 60, Lecture Notes in Computer 0
Science, Springer-Verlag, N.Y., 1978, pp. 393-481.

,GLPT] Gray, J.N., Lorie, R.A., Putzulo, G.R., and Traiger, I.L. .1
"Granularity of Locks and Degrees of Consistency in a Shared
Database," IBM Research Report RJ1654, September 1975.

[GMBL] Gray, J.N., P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price,
F. Putzolu, I. Traiger. "The Recovery Manager of the System R
Database Manager," Computing Surveys 13, 2 (June 1981), pp. 223-242.

[HS] Hammer, M. and D.W. Shipman. "Reliability Mechanisms for SDD-l:
A System for Distributed Databases," ACM Trans. on Database Sys.
5, 4 (Dec. 1980), pp. 431-466.

[Holt] Holt, R.C., "Some Deadlock Properties of Computer Systems,"
Computing Surveys 4, 3 (Dec. 1972), pp. 179-195.

[KNTH] Kaneko, A., Y. Nishihara, K. Tsuruoka, and M. Hattori. "Logical
Clock Synchronization Method for Duplicated Database Control,"
Proc. First International Conf. on Distributed Computing Systems,
IE-E, N.Y., Oct. 1979, pp. 601-611.

[KMIT] Kawazu, S., Minami, S., Itoh, K., and Teranaka, K. "Two-Phase
Deadlock Detection Algorithm in Distributed Databases," Proc. 1979
International Conference on Very Large Data Bases, IEEE, N.Y.

[KC] King, P.F., and Collmeyer, A.J. "Database Sharing--An Efficient
Mechanism for Supporting Concurrent Processes," Proc. 1974 NCC,
AFIPS Press, Montvale, New Jersey, 1974.

[KR] Kung, H.T. and Robinson, J.T. "On Optimistic Methods for Con-
currency Control," Proc. 2979 Int. Conf. on Very Large Data
Bases, Oct. 1979. '

[Lamp] Lamport, L. "Time, Clocks, and the Ordering of Events in a 7
Distributed System," Comm. of the ACM 21, 7 (July 1978), pp. 558-

565.

[LS] Lampson, B. and Sturgis, H. "Crash Recovery in a Distributed Data
Storage System," Tech. Report, Computer Science Laboratory, Xerox,
Palo Alto Research Center, Palo Alto, Calif. 1976.

[Lelanni LeLann, G. "Algorithms for Distributed Data-Sharing Systems
Which Use Tickets," Proc. 3rd BerkeZey Workshop on Distributed
Databases and Computer Networks, August 1978.

(Lin] Lin, W.K. "Concurrency Control in a Multiple Copy Distributed
Data Base System," Proc. 4th BerkeZey Conference on Distributed

*.d. Data Management 4 Computer Networks, August 1979.

.,,-..,



. --. - .J - . •-50-

NLN] Lin, W.T.K. and J. Nolte. "Performance of Two Phase Locking,"
Proc. 1982 BerkeZey Workshop on Distributed Data Management and
Conputer Networks, pp. 131-160.

9IMM Menasce, D.A. and Muntz, R.R. "Locking and Deadlock Detection in
Distributed Databases," IEEE Transactions on Software Engineering,
Vol. SE-5, No. 3, May 1979, pp. 195-202.

[MPM] Menasce, D.A., G.J. Popek and R.R. Muntz. "A Locking Protocol
for Resource Coordination in Distributed Databases," Proc. 1978
ACM-SIGMOD Conf. on Management of Data, ACM, N.Y.

(Mino] Minoura, T. "A New Concurrency Control. Algorithm for Distributed
Data Base Systems," Proc. 4th BerkeZey Conference on Distributed
Data Management & Computer Networks, August 1979.

[Montgomery] Montgomery, W.A. "Robust Concurrency Control for a
.. Distributed Information System," Ph.D. Dissertation, Laboratory

for Computer Science, MIT, Dec. 1978.

[PBR] Papdimitriou, C.H., Bernstein, P.A., and Rothnie, J.B., Jr.
"Some Computational Problems Related to Database Concurrency
Control," Proc. Conf. on Theoretical Computer Science, Waterloo,
Ontario, August, 1977.

[Papadimitrioul Papadimitriou, C.H. "Serializability of Concurrent Updates," .
. Journal of the ACM, Vol. 26, No. 4, Oct. 1979, pp. 631-653.

[Reed] Reed, D.P. "Naming and Synchronization a Decentralized Computer
System," Ph.D. Thesis, MIT Department of Electrical Engineering,
Sept. 1978.

[Riesl] Ries, D. "The Effect of Concurrency Control on Database Management
System Performance," Ph.D. Dissertation, Computer Science Depart-
ment, University of California, Berkeley, April 1979.

[Ries2] Ries, D. "The Effects of Concurrency Control on the Performance of
a Distributed Data Management Systems," Proc. 4th Berkeley Conf. .O
on Distributed Data Management & Computer Networks, August 1979.

[RSL] Rosenkrantz, D.J., Stearns, R.E., and Lewis, P.M. "System Level
Concurrency Control for Distributed Database Systems," ACM Trans.
on Database Systems, Vol. 3, No. 2 (June 1978), pp. 178-198.

iSM] Shapiro, R.M. and Millstein, R.E. "Reliability and Fault Recovery
in Distributed Processing," Oceans '77 Conference Record, Vol. II,
Los Angeles, 1977.

[SKI. Silberschatz, A. and Z. Kedem, "Consistency in Hierarchical Data-
base Systems," JournaZ of the ACM, Vol. 27, No. 1, Jan. 1980,
pp. 72-80.



... *. .,... .

-51-

[SRL Stearns, R.E., Lewis, P.M., II, and Rosenkrantz, D.J. "Concurrency
Controls for Database Systems," Proc. of the 1?th Annua7 Symposinwn
'on Foundations of Computer Science, IEEE, 1976, pp. 19-32.

[SR] Stearns, R.E., and D.J. Rosenkrantz. "Distributed Database
Concurrency Controls Using Before-Values," Proc. 1981 ACM-SIGMOD
Conf., ACM, N.Y., pp. 74-83.

[Stonebraker] Stonebraker, M. "Concurrency Control and Consistency of 0
Multiple Copies of Data in Distributed INGRES," IEEE Transactions

'. on Software Engineering, Vol. SE-5, No. 3, May 1979, pp. 188-194.

[Thom] Thomas, R.H. "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases," ACM Trans. on Database Systems,
Vol. 4, No. 2, June 1979, pp. 180-209.

. . . - - - - -

.. ' . . -. .

. . . . . . . .. .

~. ..........

A.-. ".. A .. A I



-52-

SECTION III

MULTIVERS ION CONCURRENCY CONTROL

-THEORY AND ALGORITHMS*

Philip A. Bernstein

Nathan Goodman

4 *An extended abstract of this paper appeared in the Proceedings of the

First ACM SIGACT-SIGOPS Symposiumn on Principles of Distributed Computing.
* The complete paper has been accepted for publication in ACM Transactions

- on Database Systems.

%

hE%0



-53-
W.-'

ABSTRACT

Concurrency control is the activity of synchronizing operations

issued by concurrently executing programs on a shared database. The goal

is to produce an execution that has the same effect as a serial

(noninterleaved) one.

In a multiversion database system, each write on a data item produces

a new copy (or Version) of that data item. This paper presents a theory for

analyzing the correctness of concurrency control algorithms for multiversion

database systems. We use the theory to analyze some new algorithms and

some previously published ones.

* . 4

. -. 1

A. - -. -t.

Oft,!

% .tl



P. 
.p," i V..7

-54-

1. INTRODUCTION

A database system (dbs) is a process that executes read and Write

operations on data items of a database. A transaction is a program that

issues reads and writes to a dbs. When transactions execute concurrently,"

. the interleaved execution of their reads and writes by the dbs can produce

undesirable results. Concurrency controZ is the activity of avoiding such

undesirable results. Specifically, the goal of concurrency control is to

produce an execution that has the same effect as a serial (noninterliaved)

one. Such executions are called serializabZe.

A dbs attains a serializable execution by controlling the order in

which reads and writes are executed. When an operation is subritted to

the dbs, the dbs can either execute the operation immediately, delay the

operation for later processing, or reject the operation. If an operation-.

is rejected, then the transaction that issued the operation is c orted,

meaning that all of the transaction's writes are undone, and transactions

that read any of the values produced by those writes are also aborted.

The principal reason for rejecting an operation is that it arrived

"too late". For example, a read is normally rejected because the value

it was supposed to read has already been overwritten. Such rejections can

be avoided by keeping old copies of each data item. Then a tardy read

can be given an old value of a data item, even though it was "overwritten".

In a multiversion dbs, each write on a data item x, say, produces a

new copy (or version) of x. For each read on x, the dbs selects one of

the versions of x to be read. Since writes do not overwrite each other,

and since reads can read any version, the dbs has more flexibility in

controlling the order of reads and writes. Several interesting concurrency



9; ..55-.

control algorithms that exploit multiversions have been proposed [BEHR,BHR,

CFLNR,Dubo,Reed,Silb, SLR,SR]. Theoretical work on this problem includes

[PK,SLR].

This paper presents a theory for analyzing the correctness of con-

* * currency control algorithms for multiversions dbs's. We present some new

-2 multiversion algorithms. WE use the theory to analyze the new algorithms

and several previously published ones.

Section 2 reviews concurrency control theory for non-multiversion

databases. Section 3 extends the theory to multiversion databases.

Sections 4-6 use the theory to analyze multiversion concurrency control

algorithms.

-S



- - -- - -- -- - -°..

-56-

2. "SIC SERIALIZABILITY THEORY

The standard theory for analyzing database concurrency control algo-

A.,rithms is serializabiitj theory [BSWCasa,EGLT,Papa,PBR,SLRJ. Serializabi-.-

lity theory is a method for analyzing executions allowed by the concurrency

control algorithm. The theory gives a precise condition under which an

execution is correct. A concurrency control algorithm is then judged to be

correct if all of its executions are correct.

This section reviews serializability theory for concurrency control

without multiversions.

." 
4"

2.1 System Model

We assume the dbs is distributed and use Lamport's model of distributed

executions [Lamp]. The system consists of a collection of processes that

comnunicate by passing messages. The model describes an execution in terms

of a ha.ppens before relation that tells the order in which events occur. An

event is one of the following: the execution of an operation by a process,

the sending of a message, or the receipt of a message.

Within a process, the happens before relation is any partial order

over the process's events. For the system, the happens before relation. -

(denoted <) is the smafet partial order over all events in the system

such that: (1) If e and f are events in process P, and e happens

.,

before f in P, then e <f. (2) If e is the event "Process P sends

" message 1n and f is the event "Process Q receives M', then e < f.

Condition (1) states that < must be consistent with the order of events

within each process. Condition (2) states that a message must be sent

".wth7 u r

2.1 S}'sem.....



-57-

before it is received. And, since < is the smallest partial order satis-

fying thesp conditions, condition (2) i8 the onZy way that events in .

different processes can be ordered.

This paper deals at a higher level of abstraction. Hereafter, we will

not explicitly mention processes and messages (except briefly in Section 6).

For concreteness, the reader may assume that each transaction is a process,

and each data item is managed by a separate process. (Our results don't

depend on these assumptions.) Under these assumptions each database operation

entails two message exchanges. For transaction T. to read x, T. must send

a message to x's process; to return x's value, the x process must send a

* message to T.. The same message pattern is needed for writes; in this case,

the return message just acknowledges that the write has been done. Also

under these assumptions, any decision or event ordering involving one data

__ item is a local activity; decisions or orderings involving multille data iter.s 9

are distrib-ited activities. The abstraction that we use hides message

exchanges and related issues, allowing us to reason about concurrency control

at a higher level.

2.2 Logs

Serializability theory models executions by Zogs. A log identifies the

Read and Write operations executed on behalf of each transaction, and tells

ez the order in which those operations were executed. A log is an abstraction .

of Lamport's happens before relation.

A tranaction Zog represents an allowable execution of a single trans-

action. Pormally, a transaction log is a partially ordered set (poset) S

. ... < A -'° __



-58-

T.- (ri,<.) where -I is the set of Reads and Writes issued by (an

execution. of) transaction i, and <. tells the order in which those

operations must be executed. We write transaction logs as diagrams.

r [XJ
T1 = wl [x] 7:2O

r [z] 1

T represents a transaction that reads x and z in parallel, and then

writes x. (Presumably, the value written depends on the values read.)

We use ri[x] (resp., wi[x]) to denote a Read (resp., Write) on x

issued by Ti. To keep this notation unambiguous, we assume that no trans-

action reads or writes a data item more than once. None of our results

* depend on this assumption.

Let T= {T O . Tn I be a set of transaction logs. A dbs Zo (or

simply a Zoo) over T represents an execution of To I... T . Formally,n )-
a log over T is a poset L= (E,<) where

1 0n E ;) ii

2. <=, n  < ;
- i=0 i

3. every r. Ix] is preceded by at least one w. [x] (i = j is Fossirl V,
J 1-. "

where w. [x] precedes r. Ix] is synonymous with w. Ix] <r. [x]; and

4. all pairs of conflicting operations are < related (two operations

confZict if they operate on the same data item, and at least one is

a Write).

Condition (1) states that the dbs executed all, and only, those operations.S

submitted by T, ... ,T. Condition (2) states that the dbs honored all

operation orderings stipulated by the transactions. Condition (3) states

ho .--it
that no transaction can read a data item until some transaction has written

- ir



-59..

its initial value. Condition (4) states that the dbs executes conflicting

operationsfsequentially. E.g., if T. reads x and T. writes x,9

r :xhappens before w~ Ix] or vice versa; the operations cannot occur at

Consider the following transaction logs

w 1I r [xI
0 13. .

To w w0  T1  w [x]
0 0y

w 0 z) r Ifzj

The following are some of the possible logs over {TOOT

0 01

w 0[x]lI X

W [z] --w r [ zI0 1

WIx] -~r Ix]0 1
(2) W [yJ w 1I]

0 1

(3) w [y] w 1I

w [z] -~r [zi .

0 1

Note that orderings implied by transitivity are usually not drawn. E.g.

w [x< <w Ix] is not drawn in the diagrams, although it follows from
0 1.

w [x3 <r x]J< w Ix],

01 1



-60-2

Notice that the dbs is allowed to process Read(x) and Read(z)

sequentially (cf. (1) and (2)), even though T allows them to run in

parallel. However, the dbs is not allowed to reverse or eliminate any

ordering stipulated by T.

Given transaction logs

w [z] r [z]
0

*w [w] [r r1 (

Tw [y]- []T r Z r4 (X)
T2  2 x -~2[ T3  r3z 4  = 4(y

2 3 w[z] r [z)
3 4

the following is a log over {T 0 T IT 2,T 3FT 4.

r Ix]

L w [x]
0

w 1 1
w0[

r [z3---* [y)r [y]
3 3 4

ww [z]

The following is another log over the same transactions.

L2  W xW (y]w [zlr (xlW [y~r [x~r [z 1 [x~r [z)w (Y~w Wzr Wxr Jyjr Wz.
2 W 0 0 2 2 1 13 3 3

her



-61- --

When we write a log as a sequence, e.g. L2, we mean that the log is

totally ordered: each operation precedes the next one and all subsequent

ones in the sequence. Thus, in L2, w0 [x] <wo[y] <wo[z] <r 2 [x].

2.3 Log Equivalence

Intuitively, two logs are equivalent if each transaction performs the

same computation in both logs. We formalize log equivalence in terms of

information flow between transactions.

Let L be a log over {T ...,T . Transaction T. read-x-from

0 n )
T. in L if (1) w. [x] and r. [x] are operation4 in L;

(2) wi[x] <r.[x]; and (3) no w kx] falls between these operations.
1 k

Two logs over {T,...,T 1 are ecuivalent, denoted , if they have the0 n
same reads-from's; i.e. for all i,j, and x, T. reads-x-from T. in one

log iff this condition holds in the other. This definition ensures that

- each transaction reads the same values from the database in both logs.

Consider logs L1 and L2  of the previous section. These logs

have the same reads-from's:

T reads-x-from T0 , T1 reads-z-from T
1 0

T reads-x-from T
20

, T reads-z-from T
3 0

T reads-x-from T T reads-y-from T , T reads-z-from T
4 1 4 3 4 3

Therefore, L EL

This definition of log equivalence ignores the final database state

produced by the logs. For example, these logs are equivalent

L - w[x] w x]
0 1

L w [x) w[ x'
1 0

4LA

-.......................................................................



-62-...

even though different transactions produce the final value of x in each

log. It is often desirable to strengthen the notion of equivalence by -

insisting that for each x, the same transaction writes the final valuc of x

in both logs. This can be modelled by (i) adding a "final transaction" that

follows al1 other transactions and reads the entire database (e.c., T4 in

- Logs L1 and L 2); and (ii) redefining equivalence to be that the logs have the

same reads-from's and the same final transaction.

2.4 Serializable Logs

A serial log is a totally ordered log on such that for every pair of

transactions T and T., either all of T.'s operations precede all ofT~i T. T. oeainipeeealo

T.'s, or vice versa (e.g., L2  in Section 2.2). A serial log represents ""°"

an execution in which there is no concurrency whatsoever; each trans-

action executes from beginning to end before the next transaction begins.

From the point of view of concurrency control, therefore, every serial log

represents an obviously correct execution.

What other logs represent correct executions? From the point of view

of concurrency control, a correct execution is one in which concurrency

is invisible. That is, an execution is correct if it is equivalent to an

execution in which there is no concurrency. Serial logs represent the

"*' .-. latter executions, and so a correct log is any log equivalent to a serial

log. Such logs are termed seriaizabZe (SR).

Log L1  of Sec. 2.2 is SR, because it is equivalent to serial loc L2

of Sec. 2.3. Therefore L1  is a correct log. "..

*..

% A

O%'.

-- r. . .--

. .S . . 5. ~ s . . .. ..., , . ,. . . :: !, . . . .. . . ,. . -,
,-.- . -. .-.. , , ...- .. . S . . : - .;: ; . .- '.-,.,-;-"",-.-.," - ,. . ,..< ,



-. -..- 7.' .

J-:" " " .'l
-p-

~~-63--"

2.5 The Serializability Theorem

Let L be a log over {T ... o T) The 8er2.aZizatian graph for L,
0'-n

SG(L), is a directed graph whose nodes are TO ...,T, and whose edges

are all T - T (i~j) such that some operation of T. precedes and -

conflicts with some operation of T . The serialization graph for examl.le

log L is

SG(L T 3 T "

Edge T0 T1 is present because w0 x] < r Ix]. Edge T]."-T 3 is present

because r [z <w 3( z ]. And so forth.

SERIALIZABILITY THEOREM [BSW,EGLTPapa,PBRSLR]. If SG(L) i-

ac-,cZic tken L is SR. o

,-

b .2,
. .  . '.

, .../.,.. .'.-

• -'" '-... 
..



-64- .

3. MULTIVERSION SERIALIZABILITY THEORY

In a multiversion dbs, each write produces a new version. We denote

versions of x by xi , xj..., where the subscript is the index of the

transaction that wrote the version. Operations on versions are denoted

r [x. ] and w [x ].

3.1 Multiversion Logs

Let T = IT ... OT be a set of transaction logs (defined exactly

as in Section 2.2, i.e., the operations reference data items). To

execute T, a multiversion dbs must translate T's "data item operations"

into "version operations". We formalize this translation by a function h

which maps each w.[x] into w Ix], and each rx] into r.[x I for

some j.

A nnultiversion dbs Zog (or simply mv log) over T is a poset

L= (,<) where

1. Z=h(U i), for some translation function h,

2. for each T., and all operations op. and op', if op> < o

then h (op) < h (op'), and

3. if h(r[x]) rj[x.], then w.x <] <rjxI.

Condition (1) states that each operation submitted by a transaction is

translated into an appropriate multiversion operation. Condition (2)

states that the mv log preserves all orderings stipulated by transactions.

Condition (3) states that a transaction may not read a version until it's

been produced.... -

The following is an my log over {T ,T ,T2,T ,T of Section 2.
0 1 2' 34

N'...*~.*-*'.........



-65-

wa i [X o pw I'" I or[

w0[x0] 1 ] Sr4 [x1 ]
: I~ [z0-22

L w0 y0]

Sr 3IZo ---+w 3 y3 I r 4z ]
2 ~ ~ 2 0~ ~ 2 3."--..- [3 I , "":'

- '' . All my logs over a set T have the same write operations, since -:.

-..- h(w. [x])=wi [x.]. But they needn't have the same reads. For example, x-'

' L4  has r4 [y2] instead of r4[y3 ]. -.

0 0
r [x I w Y r

0 0  3 11

L 0 [ w~ 1 ] r4 [y2 ] .

43 0

-r ]

W[x 2  w [2 I r4 [z]

0 0 r4z 0 ] 1w3 [y3 ]

r [I I

K 3.2 MV Lo2 Euivalence

Most definitions and results from basic serializability theory extend .-

to my logs: we simply replace the notion of "data item" by "version" .n " -

. . those definitions and results. However, the structure of my logs simplifies -

the treatment. This section redoes the material of Sections 2.3 and 2.4 -

for my Igs. z"w I

Let I,, be an my Thg over {TO .... ,Tn}. Transaction T. read-ic-from..

0 n 3)

T. in L if T. reads the version x produced by T.. By definition,-:'."

IzI
3 1

thoe ves iion s f d x rduelyt.s. Hr So, st.ctreao f m og sipiff e

th veso of. x prdcdb *sx.S, ed--rmT f



• . . o .

-66-

T. reads x.. This means that the reads-from's in L are determined by

the translation function h, viz. the way h translates "data item reads"

into "version reads".

Two my logs over {T0 ...,T n  are equivalent, denoted E, if they have

the same reads-from's. The reads-from's in an mv log are determined by its read

operations: T. reads-x-from T. iff ri[x.] is an operation of the log.

So, two logs are equivalent iff they have the same read operations. Moreover,

since all my logs over the same transactions have the same writes, equivalence

reduces to a trivial condition.

FACT i. Tr O mv Zoos cvcr a set of transactions T are equivalent iff the

logs have the same operations. n

Two "version operations" conflict if they operate on the same version

and one is a write. Only one pattern of conflict is possible in an mv log:

If opi < op*' and these operations conflict, then op. is w.x I] and op.

is rj[xi]. Conflicts of the form wi[x i]<wj[xi] are impossible, because

each write produces a new version. Conflicts of the form r[x.] <wi[x i]

are impossible since T. can't read x. until it's been produced. Thus

all conflicts in an my log correspond to reads-from's.

The serialization graph for an my log is defined as for a regular log.

Since conflicts are so structured in an mv log, serialization graphs are

quite simple. Let L be an mv log over {To p ... #Tn}. SG(L) has nodes
0' n

To p ... Tn  and edges T. Tj (i#j) such that for some x, Tj reads-x-from T..n11 j -

That is, T -T. is present iff for some x, r[x] is an operation of L. "---
::) gives 1ste

This gives us the following. -m

"i -. ..... . . ./. .. ....... .... . .- -.- . -.-. . . . .- -- - . ,.-.. ...- - . .. ..-..-. , -_



too-,

-67-

FACT 2. Let L and W' be my logs over T. 0
f

(i) If L and L, have the axe operations, then SG(L)- SG(L).

(ii) If L and L' are eqzdivatent, then SG(L)- SG(L'). 03

The serialization graphs for logs L 3 and L of the previous section

are given below.

T

SG(L )= T -. T -
3 0 3 4

2

SG(L T - _PT T4 0 3 4

T26

(Compare to SG(L in section 2.4.)

3.3 One-Copy Serializability

Although the database has multiple versions, users expect their trans-

actions to behave as if there were just one copy of each data item. Serial6

logs don't always behave this way. Here is a simple example.

w 0 I0~ 1w 0 [y 0)r 1 x 0]w 1 ly 1 Ir 2 IY)w 2[Ix 2

2 reads-y-from T0  even though T1  comes between T0  and T2  and produces j

T

a new value for y. This behavior cannot be reproduced with only one copy of

y. In a one copy database, if T 0comes before T Iand T is before T 2

then T2 must read the value of y produced by T1

* S ..... . .2



-68- 2

We must therefore restrict the set of allowable serial logs.

A serial mv log L is one-copy serial (or 1-serial) if for all i,j,

and x, if T. reads-x-from T. then i=j or T. is the last transaction preceding

T. that writes into any version of x. (Since L is totally ordered, the
)

. . word "last" in this definition is well-defined.) The log above is not 1-

serial, because T2 reads-y-from To, but w0 y0]< w[Yl] < r2 [y0 ]. L5 below

is 1-serial.

'

L5 = w0 [x 0 ]w0 y 0 ]w0 [z 0 ]r 2 [x 0 ]w 2 ly 2 ]rl [x 0 ] r [z 0 ] w [ X ]r .3 [z 0 ]w3 [y 3 ]w3 1z3

r 4 [x1 Jr 4 [y 3
] r 4 [z 3 ]

A log is one-copy seriaZizabZe (or 1-SR) if it's equivalent to a

1-serial log. For example, L3 of Section 3.1 is equivalent to L5, as can

be verified by Fact 1; hence L3 is I-SR. L4 is equivalent to no

1-serial log (this can be verified by checking all possible serial logs

with the same operations as L4); hence 1. is not 1-SR.

4 4

It is possible for a serial log to be 1-SR even though it is not

1-serial itself. For example

w [X r [x W [Ix] r [x O0 0 1 0 1 1 2 0

is not 1-serial since T2 reads-x-from T instead of TI . But it is 1-SR, .

because it is equivalent to

w [x 0 ] r2 [x rlIx 0 ] W [X
0 0 20 1 0 1 1

One-copy serializability is our correctness criterion for multiversion

concurrency control. The following theorem justifies this criterion,

proving that an my log behaves like a serial non-mv log iff the my log is --

I-SR.

-. . . . . . .. . . ,. . -. .



-69-

First, we extend our notion of log equivalence to handle my and

non-mv logs. Let L and L' be (my or non-mv) logs over T. L and L'

are equivalent, , if they have the same reads-from's.

1-SR EQUIVALENCE THEOREM. Let L be an my log over T. L is equi-

vaLent a serial, non-mv log over T iff L is I-SR.

Proof (if). Let L be a 1-serial log equivalent to L. Form a
s

serial, non-mv log L' by translating each wilx] into w,[x] ands 1

r Ix] into r.[x]. Consider any reads-from in Ls , say T. reads-x-from

T.. Since L is 1-serial, no Wk[Xk] lies between w.[x.] and r.[xi],

Hence no wk[x] lies between w.[x] and r.[x] in L' Thus,

T. reads-x-from T. in L'. This establishes L' EL • Since L EL,
I s s s s.

LEL' follows by transitivity (since is an equivalence relation).
S

(only if). Let L' be the hypothesized serial, non-mv log equivalent
s

to L. Translate L' into a serial my log L by mapping each v. [x]
s s

into w.fx.] and each r.[x] into r.[x.] such that T. reads-x-from T.into~ ~ adec r3  i 3 i[""-

in L'. This translation preserves reads-from's, so L EL'. B-y tranti'.',s s s ~.,
- L .-S

It remains to prove that L is 1-serial. Consider any reads-fron.

in L' say T reads-x-from T.. Since L' is a non-mv log, no w [X]
s 1 s k

lies between w [x] and r[x]. Hence no w [Xk ] lies between w[x.1 ]
Sk k i

and r.[x.] in L. Thus, L is 1-serial, as desired. -
J 1 s s

". 3.4 The 1-Serializability Theorem

To tell if an mv log is 1-SR we use a modified serialization graph.

Given ar log L and data item x, a version order for x is any (non--reflexive)

total order overall of x's versions written in L. A version order, <<, for

L is the union of the version orders for all data items. A possible version

order for L 3 of Section 3.1 (or L5 of Section 3.3) is
3 5



4 -70-

( << X
0 1

0 3

Given L and a version order <<, the mru~tiversion seriaZization

graph, MVSG(L,<<), is SG(L) with the following edges added:

(*) for each rk(x I and w (X.I in L, k3Ki, if x. <x. then

include T1 -+T., else include Tk -T.
k 'a

For example,

ATl

NVSG(L <<) = T- T
3' 0 3 4

2

(Compare to SG(L )in Section 2.s.)

The following theorem is our Frincipal tool for analyzing mrulti-

version concurrency control algorithms.

1-SERIALIZABILITY THEOREM. An mv Log L is 2-SR iff there eXists a

version order << such that YVSG(L,«<) is acyc~ic.

Proof (if). Let L be a serial my log induced by a topological
5

sort of MVSG(L,«<). I.e., L is formed by topologically sorting

MVSG(L,<<), and as each node T. is listed in the sort.,.'

operations in L are added to L one by one in any order consistent with L.
s

Ls has-the same operations as L, so by Fact 1, L L

It -remains to prove that L is 1-serial. Consider any reads-from

situation say Tk reads-x-from T.. Let w. [x. be any other write on aJ k



* -71-

version of x. If x. x.<< then by rule (*) of the MVSG definition, the

graph inclfudes T. -T.. This edge forces T. to follow T. in L . If
1 3 3 1 s

x. <<x i, then by rule (*), MVSG(L,<<) includes T 4T.. This forces T]

to precede T. in L . In both cases, T. is prevented from falling between
s0

T. and Tk . Since T. was an arbitrary writer on x, this proves that no

I k 1
transaction that writes a version of x comes between T. and T in

L s . Thus L is 1-serial.
5 5

(only if) Given L and <<, let MV(L,<<) be the graph specified by

statement (*) of the MVSG definition. Statement (*) depends only on the

operations in L and <<; it does not depend on the order of operations

in L. Thus, if L1 and L2 are multiversion logs with the same operations,

then MV(Lif<<)=MV(L2 <<), for all version orders <<.

Let Ls be a 2-serial log equivalent to L. All edges in SG(L ) go

"left-to-right", i.e. if T. -TT. then T. is before T. in L . Define

<< by: x. <<x. only if T. is before T. in L . All edges in bMV(L ,<<)
1 J 1 3 s

are also left-to-right. Therefore all edges in MVSG(L ,<<) -MV(L ,<<) USG(L )

are left-to-right, too. This implies that MVSG(L ,<<) is acyclic.
S

By Fact 1, L and L have the same operations. Hence,
S

MV(L,<<) MV(L ,<<). By Fact 2, SG(L)-=SG(L ). Therefore MVSG(L,<<) =

MVSG(L ,< < ). Since MVSG(Ls,<<) is acyclic, so is MVSG(L,<<). 0

Sections 4-6 use the 1-serializability Theorem to analyze multiversion

concurrency control algorithms. We conclude this section with a complexity

result.

*%.'*- . .*),**. -*.* .*, . ... .*

*L - ... - .... * -. ..



l
• . ~7 7%.' .-

91 -72-

3.5 1-Serializability is NP-Complete

1-SR COMPLEXITY THEOREM. It i6 NF-corZete to decide whether or "v -

is I8-SR.

*7:1
Proof (membership in NP). Let L be an mv log over T. Guess a 1-serial

log L over T and verify L =L. By Fact 1, we can verify L EL by
S 5 S

comparing the logs' operation sets.

(NP-hardness). The reduction is from the log SR problem. Let L' be

a non-mv log over T. Map L' into an equivalent mv log L by translating

each w.[x] into w. [x.] and each r.[x] into r.[x.] such that T. J
reads-x-from T. in L'. By the 1-SR Equivalence Theorem, L is I-SR iff

there exists a non-mv serial log L' such that L-L'. But, by transiti-

vity, L' exists iff L' is SR. Thus L' is SR iff L is 1-SR.

Papadimitriou and Kanellakis prove that a related problem is NP-

complete [PK]: Given a conventional log L, can one transform L into a 1-SR

mv log by mapping each w. Ix] into w. Ix.] and each r. [x] into r. [x.] for

some x. where w. [x] <r. [x]? This problem corresponds to choosing versions1 1 ] '.J

for reading after having scheduled the operations. Our problem corresponds

to choosing versions at the same time as scheduling the operations.

..-. ,-.... . . . . . . . .

-.. . . . . . . . . .. .. *-j- -.
- - , > --.--. - -



-" - '- -"

77-j
-73-

1. MULTIVERSION TIMESTAMPING

" .The earliest multiversion concurrency control algorithm that we know

of is Reed's multiversion timestamping algorithm [Reed].

Each transaction, Ti, is assigned a unique timestam'p, TS(i), when it -"0

begins executing. Intuitively, the timestamp tells the "time" at which the

transaction began. Formally, timestamps are just numbers with the property

that each transaction is assigned a different timestamp. Each Read and

Write carries the timestamp of the transaction that issued it,and each version

carries the timestamp of the transaction that wrote it.

Operations are processed first-come-first-served. But the translation

from data item operations to version operations makes it appear as if

operations were processed in timestamp order.

The algorithm works as follows.

.r.[x] is translated into r ixk ], where xkis the version of x

with largest timestamp <TS(i).

.w [x] has two cases. If the dbs has already processed rjIx I such
* 1 jk

that TS(k) <TS(i) <TS(j), then w.[x] is rejected. Otherwise w.[x]

is translated into w. [x.]• Intuitively, w. Ix] is rejected if it
1 i 1 .

would invalidate r.[x .
Ik 

We wish to use serializability theory to prove this algorithm correct.

To do so, we must state the algorithm in serializability theoretic terms.

. We take the description of the algorithm above and infer properties that all .1

logs produced by the algorithm will satisfy. These properties form our

formaZ d~finition of the algorithm. We use serializability theory to prove

that these log properties imply 1-serializability. -. 1

The following properties form our formal definition of the my time-

starping aZgorithm. Let L be an my log over {TO ... PTn1.
0 n

.. . . .
-"# " " ", . .'. ". • *. . ." -. * ." "..-. . " • . . '-

2.. e , ~ - . *** . . *p~t'..2t ... .tA ,.



* . ... .. ,

-74- "

- TSl. Every T. has a numeric timestamp TS(i) satisfying a unique-
10

. ness condition: TS(i) TS(j) iff i -j.

TS2. Every r [x ] and w.[x.] are < related; i.e., r [x ]<w.[x]
ki k j i

or vice versa.

TS3.1 For every r x.], TS(j)TS(k).
kj

TS3.2 For every r [xj} and w.Ix.], i#j, if wix.] <rk[x ], then
k11 k j -

either TS(i) <TS(j) or TS(k) <TS(i).

TS4. For every r xj] and w.[xi], i~j, if r [x ]< w [x.], then

k j 11 i .

either TS(i) <TS(j) or TS(k) <TS(i).

4"- Property TSl just says that transactions have unique timestamps. TS2

is implicit in the description of how the algorithm works; without this

property, the statement, "If the dbs has already processed r [x ... " is
J k

not well-defined. TS3 states that at the time r [x.] is processed, x.

is the version of x with largest timestamp < TS(k). TS4 states that once

the dbs has processed rk[x j] it will not process any wi x.] with

TS(j) •TS(i) <TS(k).

Properties TS3.2 and TS4 can be simplified. By TS2, rk[x.] and

wIx.] are < related. So, TS3.2 and TS4 are equivalent to

TS5. For every r kx J and w.[x.], i#j, either TS(i) <TS(j) or

:-:-::- TS (k) 14 TS (i) +.:

We now prove that any log satisfying these properties is 1-SR. In

other words, mv timestamping is a correct concurrency control algorithm.

MULTIVERSION TIMESTAMPING THEOREM. AZZ Zogs produced by the my t2,e-

.tm7ping aZgorihm are 1-SR.

Proof. Let L be a log produced by the algorithm. Define a version

order by: x.<<x implies TS(i) <TS(j). We prove that all edges in1 -. .,



-75- -

HVSG(L,<<) are in timestanp order: if T.-*T. is an edge, then TS(i) <TS(j).

Let T.- T. be an edge of SG(L). This edge corresponds to a reads-
1

from situation, i.e., for some x, T. reads-x-from T. By TS 3.l1 TS (i) TS (j);

by TSl, TS(i) #TS(j). So TS(i) <TS(j), as desired.

* Consider any edge introduced by rule ()of the MVSG definition. Let

w Ix.1, w Nx1, and r ix Ibe the operations stipulated by rule (*.There

are two cases. (1) x. <<X. Then the edge is T.- T.. TS(i)< TS(j) comes
1 ) 1

from our definition of <<. (2) X.< «X.. Then the edge is T -+T. By TS5,
) 1k i*

either TS(i) <TS(j) or TS(k) <TS(i). The first option is impossible,

since the definition of << requires TS(j) <TS(i). By TSl, TS(k) #TS(i).

So, TS(k) <TS(i), as desired.

This proves that all edges in MVSG(L,«<) are in timestamp order. Since

tim~estamps are numbers, hence totally ordered, it follows that MVSG(L,«<)

is acyclic. So by the 1-Serializability Theorem, L is 1-SR.

7.



-76--

5. MULTIVERSION LOCKING

Bayer et al. [BEHR, BHR] and Stearns and Rosenkrantz [SR] have presented

multiversion algorithms that synchronize using a technique similar to locking.

This section studies a generalization of their algorithms. As in the

previous section, we start with an informal description of the algorithm. '

Then we state log properties the algorithm induces. Finally we prove that

these log properties imply 1-serializability.

Each transaction and version exists in one of two states: certified

or uncertified. When a transaction begins, it is uncertified; when a version

is written, it, too, is uncertified. Later actions of the algorithm cause

the transaction and all versions it wrote to become certified. The concept of

certified corresponds to closed in [SRI.

Let c [x.I be the event "x. is zertified." The algorithm requireS
11 1

that all c. [x.] and r (x I be < related. Also all clfx.) and cl x.)
i k j 11 ) )--

must be < related. A version order is defined by: x. <<x. iff

c,[x.]<c.[xX.

The algorithm works as follows.

•r. jx] is translated into r. x I where x is either the las.
2. k k

(w.r.t.<<) certified version of x, or any uncertified version. The alcorithr.

may use any rule whatever for deciding which of these versions to read.

w. [x] is translated into w [x.]. As stated above, x. is uncertified

at this point.

* *When a transaction finishes executing, the dbs attempts to certify it

and all versions it wrote. For each data item x that T, wrote, the dbs

tries to set a certify-Zock on x for T.. This succeeds iff no other

* transaction already has a certify-lock on x; if the lock can't be set, T. -

waits until it can. When T. has all of its certify-locks, two further
c o m1

".%" conditions must be satisfied: . [

., "[-'.I



7--

Cl. For each x that T. is certified.-4

C2. For each x. that T. wrote, and for each version Xk of x
0

that is already certified, all transactions that read xk have

been certified.

Attaining Cl is just a matter of time; once Cl is satisfied no future

event can cause it to become false. To attain C2, we set a certif -token

on x to stop future reads from reading certified versions of x; instead,

they may read x. or any other uncertified version of x.1

When these conditions hold, T. is declared to be certified. This fact

is broadcast to all versions T. wrote. When a version x. receives this
1 1

information, it, too, is certified; i.e., the event c. [x. occurs. When"- i i

x. is certified, the certify-lock and certify-token on x. are released.

This algorithm, like most locking algorithms, can deadlock. Deadlocks

can arise from two independent causes: (1) waiting for certify-locks; and

(2) waiting for conditions Cl and C2. To detect deadlocks, the algorithm can

use a directed bZocking graph whose nodes are the transactions, and whose edges

are all T. -*T. such that T. is blocking the progress of T.. There is a

deadlock iff the graph has a cycle [Holt, KC]. Deadlock prevention schemes such

as those in [BG,RS2] can also be used. The system should keep track of the two

types of deadlock separately. To resolve deadlocks caused by certify-locks,

the system should force one or more transactions to give up enough of their

'- certify-locks to break the deadlock; these transactions can try later to get

* these locks back. To break deadlocks caused by Cl and C2, the system must

abort one or more transactions. (Cascading abort is possible if the algorithm

allows transactions to read uncertified versions.)

The algorithm induces the following log properties. These properties

Uform our formal definition of the my Zocking algorithm. Let L be an mv

log over {T ..., T 1. And let us augment L with symbols that represent
0 n

important events in the algorithm, specifically: for each T, let c.

0...



-78-

represent the event "T. is declared to be certified"; for each version x"1 1 . .

written by T., let cl [x.] represent, "The dbs sets a certify-lock on x
1 1 1

for T."; and for each x., let c.[x.] represent, "x. is certified."

L1.1 For every T., c. follows all of T.'s read's and writes. '

L.2 For every x. written by T., cl. i[x ] < c <c ix.]

Property Ll says that a transaction is certified after it executes; all

certify-locks must be obtained before the transaction is certified; and

the transaction must be certified before its versions are certified. -"-

L2.1 Every cl [x.] and clix.] are < related. .

L2.2 For every x. and x., if cl.[x.]<cl.[x.] then c.[x.]<cl[x]..

L2 says that certify locks conflict--two transactions cannot simultaneously

hold certify-locks on the same data item.

L3.1 Every r Ix ] and c [x.] are < related.k i11

L3.2 For every rk[x.] and w. [x], i j, if cix.]<rkx. and

c.[x.)< r x], then c.[x.]< c.x].
k 1 J J

L3 expresses the rule for translating reads. If x. is already certified

at the time r [x I occurs, then x. is the Zast certified version at that
k3

time.

L4.1 For every rk [x j] , k #j, c [x] <ck ...
k~ k'

L4.2 For every r kx] and w [xji]ij, if r [x )<c ix.] and
k j 11 k j

c [x] < ci , then ck < c.

These last properties are certification conditions Cl and C2, respectively.

The following lemmas extract useful properties from LI-L4.

LEMMA 1. Let T. and T. be transactions that write x. Then

either cl.i[x.] <c. <c.x. <cl. [x. ]<c. <c.[x.],
11 1 11 j j j J -J.-

* or cl. Ix.] <c. < c. x.] <cl. [x.] < c. < cIx].

. ... . . . . . . . . . . . .

:.i.. . . . . . . . - - - - - - - - - --

• . . . .. . . . . . . . . . . . . . . . . . . . - - -

'..',~~~~~~~~~~~~~~~....." '. -.- .. .--. .. "" . . -"-"- ........ " .'.... .. . . '- .'. .% ".."... .. ... ,... . , . ,......." .'. --



-79-

Proof. L2.1 requires that cl.(x.I and clix.] be < related.

Suppose cl Ix. 1<clix.). By L1.2, cl (x] 1<c.< <cx.]; by L2.2,

c Ix 1< cl~ix.; by L1.2 again, cl.[xj< c. <c (x.). This establishes the
13 ~ ) 3

first possibility permitted by the Lemma. If clifx.] <cl [x.], the same
J ) 1

* argument establishes the second possibility.

* LEjMA 2. Properties L1-L4 im'ply

L5. For every r k x. k~j, c <c .k

L6. For every r [x.] and w~ [X. i j, either c. < c. or ck < c.
k 3 11 1 kj

Proof. (L5). By Ll, c < c(x] By L4.1, c [x]<C. L5 follows

by transitivity.

(L6) Using logical manipulation we can express L3.2 as

L3.2' (C i ]<r kIx.]) (C [ctxI]< r kIx ]) A-(CIx I]< r k x)

V (c Ix.I<c C. x.1).

By L3.1, the first term on the right hand side simplifies to

(c.iX I < r [x I)A (r [x.]I <C.Ix.]1)
* 11 k j k jj

*By transitivity, this implies (cilx.]< <cx.]), and so the entire right hand
11- 401

side implies c [x.]< c,[x.]. By Lemma 1, this implies c.< <c_ So L3.2'

implies

L3.2" (c. (x I < r [x.) C. < C.
i i kj 1 j

Similarly, we can express L4.2 as

'IL4.21 (r k x. < cix.] (c -cx.] c. v V c < c.)

RA- . .. . . . .



8 - .S.-. . . - - e

. .80-

By Lemma 1, ci[x.] and c. are < related. So the first term on the
) 3 1

right hand side simplifies to Cc. <clx.]). By Lemma 1, again, this is

equivalent to c.< c.. So L4.2' is equivalent to

L4.2" (r [xj < ix']) C[ ci <C V C< c
k j 1 1 i k i

L3.1 requires that r [x.] and c[x.1 be < related. This lets us
k j1

drop the left hand sides of L3.2" and L4.2", combining them into

For every rk ix ] and cl[x.], c. < c vc <c.
k " j k

Since c. [x.) exists iff w. [x.] exists, L6 follows. -1 1 1 1

We now prove that any log satisfying these properties is I-SR. In

other words, my locking is a correct concurrency control algorithm.

MULTIVERSION LOCKING THEOREM. All Zogs prcduced b? the my lccking

al!'crithr are 2-SR. •.-

Proof. Let L be a log produced by the algorithm. Define a version

order by: x, << x. implies c. < c.. We prove that all edges in MVSG(L,*.<)

are in certification order: if T. -T. is an edge, then c. < c..

Let T. 4T. be an edge of SG(L). This edge corresponds to a

reads-from situation, i.e., for some x, T. reads-x-from T.. By L5,

c. <c.

Consider any edge introduced by rule (*) of the MVSG definition.

Let w.x.], w [x ], and r[x I be the operations stipulated by rule(

2 3 k

There are two cases. (1) x. <<x . Then the edge is T. -T.. c. < c.1 J 1 ) 1 J

comes from our definition of <<. (2) x. <<x . Then the edge is T kT .3 1 k 1 -

By L6, either c. < c or c < c. The first option is impossible, since
i k I

the definition of << requires c. < c.. So, ck < c. as desired.

." 2 l -" . " " .i. L

". .... ". > :• . ." ................ i'2'', . ... '- '



4-81-

This proves that all edges in MVSG(L,< < ) are in certification order. 0!

Since the certification order is embedded in a partial order (namely L), it

follows that MVSG(L,<<) is acyclic. So, by the 1-Serializability Theorem,

L is 1-SR. a

The Stearns and Rosenkrantz algorithm (SR] differs from ours in two

respects. They allow at most one uncertified version of a data item to exist

at any point in time, by requiring that Write operations set write-locks.

Consequently, their algorithm never needs more than two versions of any data

item: one certified version and at most one uncertified version. This fits

nicely with database recovery [Gray]. Stearns and Rosenkrantz identify the

certified version of a data item with its "before-value", and the uncertified

version with its "after-value." The other difference involves deadlock

handling. Their .jorithm uses an interesting new deadlock avoidance scheme

based on timestamps.

The Bayer et al. algorithm [BEHR, BHR] also uses at most two versions

of each data item. As in [SRI, the versions of a data item are identified

with its before- and after-values. Unlike [SR], they Lse the blocking graph

to help translate data item reads into version reads. They prove that they

can always select a correct version to read. That is, reads never cause a

log to become non-l-SR and never cause deadlocks. This is a good property
L

since it allows read-only transactions (queries) to run with little

synchronization delay and no danger of deadlock.

-I.-



*-82-

6. MULTIVERSION MIXED METHOD

Prime Computer, Inc. has developed an interesting multiversion algorithm

[Dubo]. Prime's algorithm, like those at the end of Section 5, integrates

concurrency control with database recovery. Unlike those algorithms, Prime's

algorithm can exploit multiple certified versions of data items. Computer

Corporation of America has adopted Prime's algorithm for its Adaplex dbs

[CFLNRJ. This section studies a generalization of Pri..e's algorithm.

The algorithm we study is called a mixed method. A mixed method is a

concurrency control algorithm that combines locking with timestamping [BG).

Mixed methods introduce a new problem: consistent timesta7p generation. A

timestamping algorithm uses timestamps to order conflicting transactions;

intuitively, if T. and T. conflict, then T. is synchronized before T.. -- 1 J 1 J

iIf TS(i) <TS(j). A locking algorithm orders transactions on-the-fly;

intuitively, if T. and T conflict, then T. is synchronized before T.*. 1 j 1 3]

iff c. <c.. To combine locking and timestamping, we must render their

synchronization orders consistent.

Our algorithm uses mv timestamFing to p'ocess read-only transactions

(queries). The algorithm uses mv locking to process general transactions

(updaters). Queries and updaters are assigned timestamps satisfying two .

properties:

.. 1. Let T. and T. be updaters. If c.< c. than TS(i)< TS(j).1, J 1 J

2. Let T be a query and T. an updater. If r [xk] w [x
q 1 q k 11

then TS(q) <TS(i).

A consistent timestap generator is any means of assigning timestamFs that

satisfy these properties.



FID-RI36 8591 DISTRIBUTED DATABASE CONTROL AND ALLOCATION VOLUME 1 2/4
FRAMEWORKS FOR UNDER..(U) COMPUTER CORP OF AMERICA
CAMBRIDGE MA W K LIN ET RL. OCT 83

UNCLAS51FIED RADC-TR-83-226-VOL- iF362-81-C-0028 F/G 9/2 NL

Ehhmmhmmhhlo
smmhhhohhhhEE

mohhmhEEohmhEE.



.4 op

.12.

-...... .. .; -

4rr

12.0'".

IIIII- .01

IIII1II I _l 2'[:

.4

.4.--.:-

.4 ,i-..-..

4 '.. '%,

'4.',

:~....

4....'. , ' , ' " -. ,.,,: . " ' .- " -.. " ". ' '-' .I ''' ." '- -' ''.-.,.e . V _' .,W.,".-v... .... ,. .. ,, ,. .- ,.

ow. I .,r t.- - - -4 -,' '-* " " *4 - ° *- - --- = ", °- - -- " - ' ' % " i '% ° ",' ' . - % % ,., % °-

.. ..44 P "4. ".-. ,9. -' : 4 . ' - "°" " " -" " "'"" " ' '" - . . * 4.. " "'"
• " "" " "-". .

" " ' 4* ', 4, - ,". ,., , ""- .* ' '- "" " "" . .4,.,. , , , ,,,, , , ,.,,, , . . ...... ,. , ... .. , _. ,. .... 4 . .



, ... - . . . . .. . . . . .. .:..,'t-7

-83-

Our algorithm uses a LwvTport oZoCk to generate consistent timestamps.

Recall tht discussion of distributed systems from Section 2. A

Lamport clock assigns a number to each event (called its time) subject to

two conditions.

LCl. If e and f are events of the same process and e happened

before f, then time(e) <time(f). 1-

LC2. If e is the event "Process P sends message M" and f is

the event '2rocess Q receives M", then time(e) < time(f).

LCI is easily achieved using clocks or counters local to each process.

*-. LC2 can be implemented by stamping each message with the local clock time

-' when it was sent; if a process Q receives a message whose time t is

greater than Q's local time, Q pushes its clock ahead to t.
, . 9 .- : -

LCI and LC2 imply

LC. Let e and f be events in a distributed system. If e < f

then time(e) < time(f) [Lamp].

LC is precisely the condition we need to generate consistent time-

stamps. When an updater T. is certified, the process that certifies it

assigns TS(i) -time(c.). By LC, c. <c. implies time(c.) <time(c.);

hence TS(i) <TS(j) as desired. When a query T begins executing, we
q

assign TS(q)4the current Lamport time. So for all reads r [xk],

TS(q) <time(r [X]). Consider any write w.[x.] such that r [x k ]<wix].
qk 1x-, q [.1

By locking property Ll (see Section 5), w [x.] <c., so by transitivity
1 1 1.

rq[xkJ <c.. By LC this implies time(r xk ])<time(c.); hence TS(q) <TS(i)
qqk

as desired.

We now describe the algorithm in detail.

*The system maintains a Lamport clock.

-Updaters use the mv locking algorithm of Section 5.

,~~~~~~.;......,....-,-,-,.-..........-- ,... ..... .:....-........,.... ;-... . . ;..-.' . -. ,,,
,--"-'....- .'..'..''.'''.''..'- ''.,.. ."...'..- •,..-.-' .' . • . .. ........- ',,Q , .,., , ... '.. . .,, .'



47 i-4 -,ZZ,- 7 -- 7
-, .. ...- . . *

-84-

• When an updater T. is certified, the system assigns TS(i) =time(c.).

This timestamp is transmitted to all versions that T. wrote. Thus, certified
I

versions have timestamps, but uncertified versions don't.

. When a query T begins executing, the system assigns TS(q) (the

current time.

. Consider any read by Tq, r [x]. As in Section 4, we want to translate
q q

this into r Nx ] where xk is the version of x with largest timestamp <
q k

TS(q). But, some care is needed since uncertified versions don't have time-

stamps. Let t be a lower bound on the possible timestamps of any uncer-

tified x versions. For instance, let t= rini{time(cli x i])Ix. is

uncertified). Since cl[x. ] <c, time(cl Ix.]) is a lower bound on
1 1 i 1 1

time(c ).=TS(i); therefore t is a lower bound on the timestamps of any

uncertified x..

9 Consider r [x] again. If x has no uncertified versions, or if

TS(q) < t, then r [x3 reads the version xk of x with largest timestamp
qk

-< TS(q); else r [x] Waits until the condition is satisfied. (This will
q

eventually happen.)

The log properties induced by the algorithm are a simple combination of

the properties induced by my timestamping and locking. The correctness proof

is similar to those in Sections 4 and 5.

MULTIVERSION MIXED METHOD THEOREM. AZZ Zogs produced by the mv mixed

method are 1-SR. o

Prime's algorithm differs from ours in two respects. Most importantly,

Prime's algorithm doesn't use explicit timestamps. All certify events are

< related; i.e. c0, ... Pc are totally ordered. The algorithm maintains
0 n

°.

." ." . , "" -
• -**% " " * . %- • -. .- .- *. . • s* ..------- ---. ..-- . "



-85-b-.. '.

a list, CL, of all transactions that have been certified; when T. is
I

certified, its identifier, i, is inclu~ded in CL. When a query T begins
-~ q

executing, it makes a copy of CL, denoted CL(q). When T issues a read,
q

r Ix], it reads xk where xk is the latest version (w.r.t.<<) of x
q

such that kE CL(q). We can analyze this behavior as a special case of our0

mixed method. Imagine that each updater T. is assigned a timestamp equal

2-.

to its place in the certification total order; i.e. TSMi ut iff T. is

the t-th transaction to be certified. Imagine that T is assigned the
q

timestaep TS(q) = iCL(q)i +C, for iclE<. This is a consistent way of

assigning timestamps. If we now run T under our algorithm, it reads the
q

same versions as under Prime's algorithm. Since our algorithm is l-SR.

so is Prime's.

The other difference is that Prime uses a restricted form of multiersion

locking for updaters, namely two phase locking EGLTi. Write operations set

write-locks, so no data item ever has more than one uncertified version. And,

once T. writes x, no updater T. reads x until T. is certified, and vice

versa. Consequently, every updater can be certified as soon as it finishes

S* .. *-

"executing.

The net effect is that queries and updaters are totally decoupled. Queries

never delay or cause the abort of updaters, and updaters never delay or cause

the abort of queries. f

Prime's algorithm is most naturally implemented in a centralized dbs

because of the need to totally order certify events.

The following variant is more suitable for a distributed dbs

*The system maintains a Lamport clock

oUpdaters use two phase locking, hence can be certified as soon as each

finishes executing. The system assigns TS(i) -time(c as in the general algorithms.

@Queries are processed using timestamps, exactly as in the general algorithm.

. .. , * ., . 2P.



-86-

This algorithm decouples and updaters almost as fully as Prime's

algorithm.. Queries never delay or abort updaters, and updaters never abort

queries. But an updater can delay a query under one condition: if a query

T reads x, updater T. has a certify-lock on x, and TS(q) >the time of
q I

that certify-lock, then T must wait until T. certifies x. . 0

-.7

~ . , '.% . *.~.-.- . *.-* .. . . . . .. *** *'.*

,..._ .'



-87-

7. CONCLUSION

This paper has studied the concurrency control problem for multiversion

databases. Nultiversion databases add a new aspect to concurrency control.

Transactions issue operations that specify data items (e.g., read(x),

write(x)); the system must tranaZate these into operations that specify

versions. In a single version database, concurrency control correctness

depends on the order in which read's and write's are processed. In a multi-

version database, correctness depends on trwz8Zation as well as order.

we have extended concurrency control theory Lo account for the trans-

lation aspect of multiversion databases. The main idea is one-copy

seria-izability: an execution of transactions in a multiversion database

is one-copy serializable (-SR) if it is equivalent to a serial execution of

the same transactions in a single version database. A multiversion concurrency '4'

control algorithm is correct if all of its executions are I-SR. We derived

effective necessary and sufficient conditions for an execution to be 1-S ;

these condition use the concept of version order. We gave a graph structure,

vmdZiversion seriaZization graphs (MVSG's), that helps check these conditions.

Once a version order is fixed, an execution is 1-SR iffits MVSG is acyclic.

MVSG's are analogous to the serialization graphs widely used in single version

concurrency control theory.

We applied the theory to three multiversion concurrency control algorithms.

One algorithm use timestamps, one uses locking, and one combines locking with

timestamps. The timestamping algorithm is due to Reed [Reed]. The locking

algorithm was inspired by (and generalizes) the work of Bayer et al. [BEHR,

BHR] and Stearns and Rosenkrantz [SR]. The combination algorithm generalizes

an algorithm developed by Prime Computer, Inc. [Dubo] and used by Computer

Corporation of America [CFLNR].

S.4.*',. . . .'* ... ... .. ." ' .- . .." ... .. ..-. .. .. . . . . .- . . .4 . . - . .,.." " ' . . . . % %..'. ."

-. , .. , , - - . .. -. . • .-.. . . . .. *r* " .' " , " , .. ". ". ". " ."4 . , , . , . ' .



_6-01~~~, -.. 71. _ . 7

REFERENCES

[BEHR] Sayer, R., E. Elhardt, H. Heller, and A. Reiser, "Distributed
Concurrency Control in Database Systems," Proc. Sixth Int'Z Conf.
Onz Very Large Data Bases, IEEE, N.Y., 1980, pp. 275-284.

[BHR] Sayer, fl., H. Heller, and A. Reiser, "Parallelism and Recovery in
Database Systems," ACMj Trans. on Database Syst. 5, 2 (June 1980),

N pp. 139-156.

ING] Bernstein, P.A. and N. Goodman, "Concurrency Control in Distributed
Database Systems," ACM Computing Surveys 13, 2 (June 1981), pp. 185-
221.

[BSW] Bernstein, P.A., D.W. Shipman, and W.S. Wong, "Formal Aspects of
Serializability in Database Concurrency Control," IEEE Trans. on 4

Software Eng. SE-5, 3 (May 1979), pp. 203-215.

[Casa] Casanova, M.A. The Concurrenc. Control Problem of Database Systems,

Lecture Notes in Computer Science, Vol. 116, Springer-Verlag, 1981
(originally published as TR-17-79, Center for Research in Computing
Technology. Harvard University, 1979).

[CFLNR] Chan, A., S. Fox, W.T. Lin, A. Noni, and D. Ries, "The Implementation
of an Integrated Concurrency Control and Recovery Scheme,"
Proc. 1982 ACk' S.TGVOD Conf. I ACM, N.Y.

[Dubo] Dubourdieu, D.J., "Implementation of Distributed Transactions," Proc.
1982 Berkeley Workshop on D~itributed Data Management and Computer
N~etworks, pp. 81-94.

[EGLT] Eswaran, K.P., Gray, J.N., Lonie, R.A., and Traiger, I.L. "The
Notions of Consistency and Predicate Locks in a Database Systems,"
Co~mrunicatione of the ACM, Vol. 19, No. 11, November 1976.

(Gray] Gray, J.N. "Notes on Database Operating Systems," Operating Systems:
An Advanced Course, Vol. 60, Lecture Notes in Computer Science,
Springer-Verlag, N.Y., 1978, pp. 393-481.

1Q31 Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company, San
Francisco, 1979.

(Holt) Holt, R.C., "Some Deadlock Properties of Computer Systems,"
Computing Surveys 4, 3 (Dex. 1972), pp. 179-195.

[IC] King, P.F., and Collzmeyer, A.J. "Database Sharing--An Efficient
Mechanism for Supporting Concurrent Processes," Proc. 1974 NCC,
AFIPS Press, Montvale, New Jersey, 1974.

.V.

.................................
. . . . . . . . . . .. . . . . . ..



-89-
--. 

°.

(Lamp] Lamport, L., "Time, Clocks, and the Ordering of Events in a Distributed
system," Comm. of the A, 21, 7 (July 1978), pp. 558-565. .' *

(Papa) Papadimitriou, C.H., "Serializability of Concurrent Updates," Journal

of the ACM 26. 4 (Oct. 1979), pp. 631-653.

(PBR] Papadimitriou, C.H., Bernstein, P.A., and Rothnie, J.B., Jr. "Some
Computational Problems Related to Database Concurrency Control," 0
Proc. Conf. on Theoretical Corputer Science, Waterloo, Ontario,
August, 1977.

[PK] Papadimitriou, C.H., and P.C. Kanellakis, "On Concurrency Control by
Multiple Versions," Proc. 1982 ACM SIGACI-SIGMOD Symp. on Principles
of Database Syst., March 1982.

[Reed) Reed, D., Naming and Synchronization in a Decentralized Computer
System, Technical Report MIT/LCS/TR-205, M.I.T., Dept. of Electrical
Engineering and Computer Science, Sept. 1978.

[flSL] Rosenkrantz, D.J., R.E. Stearns, and P.M. Lewis II, "System Level
Concurrency Control for Distributed Database Systems," ACM Trans. cr.
Database Sy8t., 3, 2 (June 1978), pp. 178-198.

[Silb] Silberschatz, A., "A Multiversion Concurrency Control Scheme with no
Rollbacks," Proc. ACK Syr.-oziw, or P-incipZe8 of Distrilut d Cr.u' ,  -
Aug. 1982.

[SLR] Stearns, R.E., P.M. Lewis II, and D.J. Rosenkrantz, "Concurrency
Controls for Database Systems," Proc. 17th Smnp. on Foundations of
Computer Science, IEEE, N.Y., 1976, pp. 19-32. .'.

[SR] Stearns, R.E., and D.J. Rosenkrantz, "Distributed Database Concurrency
, Controls Using Before-Values," Proc. 1981 ACM-SI'GMOD Conf., ACM, N.Y.,

pp. 74-83.

... 
:q..-6-

A.

. .J

a . a. . °

• - - - . . . " . .. . " ° , " 2 " -" . *, •~* < . " . .X . . . - . - '" . * " 
° 

°oX .' . °. a". ° 
" • ' - ° 

• 
• " -

.. . .. . . . . . . . . . . .......... ...... , - , " " u .%. .-. -- % ' , % ,% N " . . "



-90-

S.. SECTION IV

PERFORMANCE ANALYSIS OF CONCURRENCY

CONTROL METHODS IN DATABASE SYSTEMS*

Annie W. Shui.

Paul G. Spirakis

-5S

%%

.5-..'..'.

5---

-5-

Publishing Co.,. 1981. .

• . . .. . . . . . . . . . ." * *:

"- --" " " ."". '-" ." "-* "- " "" - " "" "• "-" -'" " " " "" " " "" "".""* " "" -" ," " "" " 
" .," -""" "- * " " " " "

* *...• .... ... ... ...%- '.o ,, ... ...... * . .".;. . ,., 2 "*"."*". -".. -S "," ' -" '".' -.- ' " -.. 1 " -p.'"[ .



- . -. -.-.. 4 - 4 - - .. .

'. , -g -.--

-91-

Abstract

Although concurrency control in both centralized and dis-
tributed systems is a widely studied problem, not many formal
quantitative methods are known for analyzing and comparing
the performance of the proposed algorithms which are usually
complex, not described in standard terminology and each of
them has different assumptions regarding the underlying

Ienvironment. in this paper we analyze dynamic 2PL, proceed-
ing from a simple deadlock prevention 2PL (which gives worst
case bounds on the performance of any deadlock preventing 2PL)
to the general case of two phase locking where deadlocks are
allowed. The 2PL methods considered here are dynamiic.

1.0 INTRODUCTION

Although concurrency control in both centralized and distributed systems is a
widely studied problem, not many formal quantitative methods are known for analyz-
ing and comparing the performance of the proposed algorithms which are usually
complex, not described in standard terminology and each of them has different
assumptions regarding the underlying environment (inputs, communication rules,
etc.). Fortunately, it is possible to decompose every concurrency control problem
into two major subproblems, namely read-write and write-write synchronization
[B-G, 80]. Every algorithm must include a subalgorithm for solving each of these
problems. Current research indicates that only a few subalgorithms are possible.
In fact, most of them are variations of two basic techniques: two phase locking
(2PL) and timestamp ordering (T/0). Therefore, it is important to develop quanti-
tative methods for analyzing the performance of these two techniques.

In this paper we analyze dynamic 2PL, proceeding from a simple deadlock pzevention
2PL (which gives worst case bounds on the performance of any deadlock preventing
2PL) to the general case of two phase locking where deadlocks are allowed. The
2PL methods considered here are dynamic. Locks are requested in a distributed
manner over the lifetime of transaction, as found in most 2PL methods. The

* ."analysis of simple 2PL is used primarily to serve as worst case performance bound
4' for any 2PL methods. In the analysis of the general 2PL, results indicate that

the rate of deadlocks at steady state is approximately proportional to the mean ..-
.. number of transactions in the system. Our techniques for analyzing 2PL apply to
• .both centralized and distributed systems by suitably adjusting certain assumptions,

and parameters.

%:

.o..

... -

...,-*- 'K '
.............. ;,, .'. .............................. •...... ........ . .. .- * . ... *. .. .

• ~~~~~~ ~~~~~~~.-.. ....... ..-..... ,,.... .... ,...... .* .....-....... ..... . .... ,
4 ,. ,,t, +' ,"",',' , • . • , . + .. 4-,.', - . . • , - . ," .... -. . . . . 04 .' -



..- - . . . . . . .I_ . - ...

-92-

2.0 ESSENTIAL CONCEPTS AND DEFINITIONS

A database consists of a collection of logical data items x, y, z,... etc. A
logical database state is an assignment of values to logical data items. Users
interact with the database by executing transactions. Each transaction is con- j
sidered to be a sequence of Read and/or Write operations. The readset (set of
logical data items that the transaction reads) and the writeset (set of logical
data items that the transaction writes) are part of the information content of the 0
transaction. In case of distributed systems, the "stored" readset and writeset
refer to the stored copies of the logical data items in the various places. Two --
transactions conflict if the (stored) readset or writeset of one intersects the
(stored) writeset of the other (read-write and write-write conflicts). Two trans-
actions need synchronization only if they conflict [B-G, 80].

Synchronization in update processing is necessary to maintain the consistency ofdatabases. Different synchronization techniques can be applied to synchronize

read-write and write-write conflicting transactions, as soon as they induce the
same total order in the transactions. Two phase locking and timestamp ordering
are the two most common methods to solve these subproblems.

2PL synchronizes read and write operations by explicitly detecting and preventing
conflicts. The essentials of the method can be outlined as follows: Before read-
ing or writing on a data item x, a transaction must own a lock on x.

There are two rules for ownership of locks:

(1) Different transactions cannot simultaneously own locks that confict (they -"
conflict if they are both on the same item).

(2) Once a transaction surrenders ownership of a lock, it may not obtain addi-
tional locks. The second rule forces transactions to obtain locks in a two-phase ""
manner (a growing and a shrinking phase in terms of the set of locks owned by the !77
transaction). 2PL is a correct synchronization technique in the sense that logswhich are two phase locked, are serializable [BSW0 79].

2PL may block a transaction by causing it to wait for an unavailable lock. In -
case of distributed systems, a transaction may have to wait in a site, even if the
site is currently idle. If this blocking is uncontrolled, deadlocks may occur.

A wait-for graph iF a directed graph indicating which transactions are waiting
for which other transactions. Its nodes represent transactions and its edges the

* wait-for relationship. (An edge is drawn from transaction Ti to Tj (ij)
ifff Ti  is waiting for a lock currently owned by Tj). A deadlock in the data-
base system corresponds to a cycle in this graph. If a deadlock exists, one
(or more) transactions in the cycle are restarted. Avoidance of cyclic restarts
is possible if, for example, the "youngest" transaction in the cycle is always

* restarted.

There are two mechanisms to resolve deadlocks, namely deadlock prevention and
* detection.

1. The execution of transactions is modelled by a set of ZogS, each of which . -.

indicates the order in which reads and writes are processed at one data
module.

.,. . - .: . .: :. . S . * .. . . .. . . . S. .- . S.' .-. . .- , . .. .. . . .



-93-

3.0 hADW K PREVENTION AND DETECTION TECHNIQUES IN 2PL ALGORITHMS

Deadlock prevention is a "cautious" scheme, since it restarts a transaction every
time the system suspects that a deadlock will occur. Suppose Transaction T is
blocked by Tj. A procedure test (TiTj) is generally applied to the blocLng
pair. If the pair passes the test, then T. is permitted to wait for T.. Else,
one or the other is restarted. If Ti(Tj) is restarted, we have a non-pieemptive
(preemptive) deadlock prevention method. The test (Ti,Tj) must ensure that the
addition of the edge (Ti,Tj) to the waits-for graph cannot introduce a cycle.

puny tests have this property. The simplest example is when Ti is always re-
started (i.e., the blocking pair never passes the test). This "simple" 2PI
causes no waiting but many restarts. In terms of restarts it may be consi- .e, r
to be a worst case of the prevention techniques. The analysis of the perl nance
of simple 2PL is outlined in Section 5.0.

Concurrency control algorithms which induce fewer restarts are priority ai , e-
stamp based [RLS, 78], [Th, 79] (wait-die, wound-wait 2PL). .".

In deadlock detection schemes, transactions are allowed to wait for each other in
an uncontrolled manner and only abort transactions when a deadlock actually
occurs. The real-time waits-for graph is searched for cycles and (at least) one
transaction in each cycle is aborted. In Section 6.0 we analyze this general 2PL
by describing the evolution of the waits-for graph as a Markovian process. The
steady-state deadlock rate is found to be approximately proportional to the mean
number of transactions in the system and the steady state conflict rate approxi- .. ,.
mately proportionately to the mean of the product of the number of transactions
in the system and the number of unblocked transactions. Prior to the discussion
of the models, let us begin with a brief review of the current research in this

.4.....

area. .--

.--.-

.00

166

%" .,, • ,% .. -. ~....- %............... ,.... ..... ..................



~~~-94-....*-' .-4. .

4 . 0 PAST WORK

Garcia Molina [GM, 79 compared variants of centralized 2PL to the majority -

consensus algorithm of [Th, 78], mostly based on simulation studies. He concluded."
that centralized 2PL out-performs the Thomas's algorithm under all tested condi- '"
tions. His assuzpions included predeclaration of readsets and writesets and a "["

fully redundant database. The analysis was limited to optimistic situations in
which run-time conflict never occurred. Ries [R, 79] analyzed by simulation
various forms of centralized 2PL and variations of distributed 2PL. For all
variations, static locking was assumed and the simulations were set up in a way
that no deadlocks occurred and run time conflicts were very rare. Consequently,
the main result was that all methods had similar behavior. One of the early
analytic approaches to performance evaluation of concurrency control schemes was
by Gelenbe and Sevcik [Ge-S 78]. Their analysis was mainly on timestamp ordering
methods. However, their assumptions about the update rules are different
from the current implementations. They defined measures of "coherence" (how much
the values of various copies of the data agree) and "promptness" (how up-to-date
the data is). Their results were based on assumptions about transmission delays
and state that coherence improves rather quickly and promptness drops slowly
under all methods considered. Menasce and Nakanishi [M-N, 79] examined "conflict
oriented" methods analytically and locking by doing simulations. The analysis
was mostly done on "certification methods." (A transaction has three phases: a
read phase, a computation phase, and a test and update phase. It can be restarted
only at the end of the last phase. After the transaction has visited all the
places it wants, its timestamp is compared against timestamps obtained during the
read phase). Unfortunately, their assumptions were not very clear and the model
analysis seemed to be oversimplified. D. Potier and P. Leblanc [D-Z, 80] analyzed
the case of centralized 2PL with static looking (a transaction is allowed to enter
the system only if all its requested locks are available). The probability that
a new transaction is granted its locks, given k other transattions already
active, was found. A general limitation of all previous analysis on 2PL is that
only static looking is examined. Although this simplifies the analysis with
respect to time dependence of state changes of the system, the issue of deadlocks
and restarts will be avoided under static locking. In order to be able to quan-
tify the degradation on performance due to restarts or deadlocks, it is important
to study dynamic locking. In addition, since most real systems use dynamic
locking, the primary objective of our analysis is to focus on the performanc-. of
dynamic concurrency control systems including the discussion of the rate of
deadlocks and restarts.

% %I

*° "- S

S. . .-"

-95-

5.0 ANALYSIS OF THE "SIMPLE" 2PL AND WORST CASE BOUNDS i,.

5.1 The Model

The phvsicaZ database is assumed to be composed by M granules (data items) with
no redundancy. In the case of a centralized multiprogramming system the granules
are located in some storage device (e.g., disk). In case of a distributed data-
base, there is one granule per site and the M sites together with their
communication links form a fully connected graph. Links and processors are
assumed completely reliable.

The transactions are characterized by the "hopping behavior." That .is, each
transaction moves from granule to granule and requests the lock on arrival. If
the lock is granted then the transaction "hops" to another place, after spending

some time in that granule (site). If the lock is denied then the transaction
simply .es-tarts; hence, this is the worst cast of 2PL in terms of number of
restarts.

Each transaction selects its move to the next granule at random (independently of
other transactions) with probability (l-e)/M for each of the M granules 2 or it
completes (exits the system) with probability e. (Note that this includes
revisiting the same granule. When this happens, the transaction does not conflict
with itself and simply spends some time in the granule and then it selects the
next granule to move by the same process.) On each visit to-the granules, the
transactions obtain service for a random time interval following the exponential -
distribution, with service rate V'.

Note that, because of our assumptions, the total lifetime of a transaction (con-
ditioned on no restarts) again follows the exponential distribution of mean

(geometric sum of exponentials of same mean).

In case of a restart the transaction releases all its locks instantaneously and
follows the same "hopping" behavior. Similarly on total completion the transac-
tion releases its locks instantaneously. The input process (arrival time
distribution of transactions) is assumed to be Poisson of rate ?.

2 [L-N, 81] conducted simulations in a non-uniform access model in which 20% of the
database are accessed 80% of the time they found that the behavior is very similar
with the behavior of the random access model of heavier load. This indicates that
the access pattern is not the dominant factor of the overall performance in large ..-

databases.

N'.N
.a - -. . . .

'# .' " " " " _'" '_ .'. "''#," ' "'' " " _' !"' '.', -; . .- e, ", ' - . , ' . - . - - . - '_t "

7 7T-96-

5.2 Justification of the Assumptions

The Poisson arrival process has been widely used to model open transaction
streams. In a distributed database, this assurption is further justified because
the input process is the sum of many point processes (one for each site) and this
sum converges to a Poisson process under weak conditions. Elimination of redun-
dancy is analogous to the primary copy policies of locking in redundant systems.
The "hopping" transaction model implies that at any time instant t, a transac-
tion can be active only at one granule and that it requests locks sequentially. -

This is true in most centralized databases. Due to lack of commercial distributed
DBMS, this assumption is yet to be tested in cases of distributed systems. Having
described the overall model, we shall now proceed with the analysis study.

V

* Previously, the "hopping" transaction model has been assumed in [R-S-L, 78] for
distributed database systems. It is a necessary assumption for the conflict driven
restart methods, including wait-die and wound-wait, to work in distributed systems.
(See [R-S-L,78] and [B-G,78]). The authors justify the use of the "hopping" model
by considering systems in which program are executed at single sites but can call
other programs as subroutines at other sites. The execution of a program together
with all its associated subroutine calls are treated as the execution of a single

* process. At any time, the "active" site is the site of the subroutine being executed
.4 and the inactive sites are those where programs are waiting for subroutines to return

or where subroutines have finished their execution. When a program at one site calls
a program at another site, both programs together are responsible for maintaining

. global consistency.

"-: There are other reasons for the "hopping" assumptions, one of which is the difficulty -.-.

K" for the impelementation of a different transaction behavior in distributed systems:
The users would have to write "parallel" programs, producing "transaction incarnations"
active at different sites at the same time. This would require sophisticated synchro-
nization methods for "chasing" the incarnations in case of restarts, deadlock

. avoidance etc. (For such systems there is a potential danger that a process will
" be rolled back at one site and made permanent at another site, thereby violating
- consistency requirements.

Furthermore it is necessary for the users to have a good knowledge of information
* contained in sites and of communication delay parameters of the system. Consequently, .. .

no such systems are currently implemented.

Having described the overall model, we shall now proceed with the analysis study.

. 5.3 Performance Analysis of the "Simple" 2PL

* " In the performance study we shall consider the following: (1) Nontrivial lower
"* bounds for the steady state probability that a transaction can complete without
. any restarts;- (2) An upper bound on the overage number of restarts per transac-

tion; and (3) mean response time of a transaction (restarts included).

% % %4. % V%.

." ,", ',,'. " ' -.." •. ., ,. ,-.-.- .,.- ,. .-.'-- ."-- .--- .'-'.... v -. . -. -. . ,. - . i ' " .' " " "%,"'"•"

-97-

5.3.1 Analysis of the System

Assme that the system has a steady state and let p be the steady state proba-
bility that a trnssaction will complete without any restarts. Consider at time ""

.t a arked" transaction T1 obtaining service at a granule. T1 is said to be
aotive at t. Let Yk(t,dt) be the Prob{Tl will conflict at (t,t+dt) given that
Tl is active at t and there are k transactions present in the system). Then,
ProbtT, will conflict at (t,t+dt)} is simply the unconditional probability of
Yk(tedt) which we denote by Y(t,dt). Assume that Y(t,dt) has a steady state
value V.dt. From that assumption,

y'dt - lim f Yk(t,dt)'p(kt)
t~f k-1

def
where p(k,t) ief Prob{k transactions in the system at time t). Consequently,
the average rate of conflicts at steady state is a constant (namely y) and hence
the probability f(T) of no conflicts (and hence no restarts) in the lifetime T

_ of a transaction is (by basic properties of the Poisson process),
e-Y . T

f(T) e

In addition,

Prb{T1 does not restart during its whole life)

f M f(Prob{T < T < T .,dTldT
r-O

-Ie--ije-IdT- --
T-0 1J+Y

So, we conclude that
U -(2)

litY

U40

.*•-.-.
. S . . .-. .

-*.- ...- - . . . -. , . S . * :'.

-98-
o.'

To find an expression for the restart rate at steady state, we begin by pointing
out that in order for T1 to conflict at (t,t+dt) (and consequently restart)
it is necessary for the following events to occur: (1) T1 completes service at

, " its current granule within (t,t+dt) without departing from the system, and (2)
.-C The next granule T1 chooses must be one of the granules already locked by one

of the other k-1 transactions in the system. Let T2 ,T3 ..., Tkk > 2 be the
other transactions and let L2 ,...,Lk be the number of distinct granules locked
at t by T2 .- , Tk respectively, Then

2 .+Lk
yk(t,dt) m (u'dt)(1-)

Let us approximate the sum L.+.--+Lk by the sun of the mean number of granules
visited by each transaction (given no restarts). Since this mean is bounded
above by 1/9, we shall approximate L2+* • +Lk by (k-l)/e. This approximation
is pessimistic since 1/9 is an upper bound achieved only in systems with
infinite number of granules and does not refer to distinct granules. Another
reason for this approximation to be pessimistic arlses from the fact that
(k-l)-I/8 increases with k for every value of k while L2+..-+Lk is bounded
by M-1. Fortunately, it is desirable to be pessimistic here since the results
of the "simple" 2PL will be worst case performance bounds for any 2PL method.

-' ' Using this approximation, we can obtain the following:
-. :. - m .::

lix r Yk(t,dtl-p(k,t) - lim I a (k-l)dt-p(k,t)
. t- k-l t-wo k-i

m u' (1-e) V (1-4)
where a = (- =

92

-Y.dt a-dt E kp(k) - + p(k) pkmO)
k-0 k,-O

a a Elk) - 1 + plk-O) J dt

where p(k), p(k-0), Elk) are the steady state values of p(k,t), p(O,t) and
man number of transactions in the system at time t.

Substituting T intc 2) we get

P M.".i- . p. = "-+ p (k-0) -1 .--

Finally,
" .,,P ")(3)"..

I "+1 - (E(k) + p(k-O) - 1)

* * * -* . * . - - -S"-

.- 99-

note that Eq. (3) is derived without any assmption about the distribution of -. 0
transactions An the system. From Eq. (3), we get

- E •) (4)
1 + E W

Since Elk) is an operational variable, it could be obtained by measurement in
most practical systems. So, Eq. (4) can be used as a mean to determine a lower
bound on p by measuring E(k). Furthermore, in most real systems the maximum
value of E(k) is bounded by a constant (maximum multiprogramming degree due to
finite memory considerations, thrashing).

Let C be such a bound on E(k). Then,

> (5)
1+- C

e2

Asusuing that the upper bound of E(k) exists and is finite then we can note the
following from Eq. (3): -i

If 3m constant, m > 1 such that 8 > m(Vg-) , then as M

p approaches the constant value

1 + • E(k) (6)2
m

In other words, if the fraction of the database that each transaction accesses is

less than l/mVT- then the probability of passing without any restart is nonzero
even at high traffic (given our started assitions).

In the above analysis, one should note that for the case 1/6 - Q(M) using
(k-l)/8 as approximation of L2+-'-+L k can be very pessimistic. For example,
when i/e - M, it gives L2+.-L k = M(k-1) whereas L2+---L k < M-1. Thus, in
this case it seems to be more appropriate to approximate L2+**-Lk by its worst
case value, namely m-l; then Yk(t,dt) becomes p • (l-1)(l/M) -dt (not
depending on k. Hence

~. -- p'- +..-. U > w'e .:..
r..P +Y - v,'e + to'(1-e) -1) /m

m8 + (1-6) (M-1) (7).

..... "..-..w .-

- -- .-."i

-100-

From Eq. (7), we can note the following:

(1) e > 0

(2) The lower bound of Eq. (7) limits to e as M

(3) if 8-1/M then p > 1/14-1

Another useful bound for p can be derived from Eq. (3) by using an estimation of

E(k). Instead of the direct value of E(k), by Little's formula,

E(k) - •

where SI..-

T - mean time a transaction spends at the system, and, %

X1 Ti " pli-I restarts)

where

-def

- mean time in system given i-i restarts.

Since p(O restarts) p and

__ 1 +ui:::o- + u - U + u

where u is the time to restart a transaction, and 1/p is the mean time of a
transaction in the database given no restarts,

Ti < i(l/u + u) Vi

Under the assumptions in the analysis, the number of restarts per transaction is
geometrically distributed and so

p(i-i restarts) M (1-P) R

Hence,
S(l/ + u) (1-E). < + u)-

I i-2

E(k)< (1/ + u)
-A.5

and from Eq. (4)

x (8) '
+ - (1/ +u)

. '

.. 5...'

" '..,,., .. .','. .',.,5 , , .. '. S 'S':.,S , -..- . ,. , . -,,.5 ,-*..''. -,',.,,. ."
* 'S **' '--," *,* S5 '.' ' ', .' ', ' .'-

•
-'".--"- . " .'".".,- " -:, - - ". .'- '.-

-101-

Solving Eq. (8) with respect to we get

-N.... p ' i - - (1/u + u) (9) . ..

-, If 3m constant, m > 1, such that 8 > m (0-)-1 then we get

1-81 - (l/ jj + u)- .
2

-. and we see that p has nonzero high values even in cases of X/j >> 1.
4-° . "." .

In systems where pages are the units of locking, e.g., system R, DMS1100, the
value of M can be very large. So let us now consider the cases when M >> 1.

i-.4,.

S.41 in here, we can assume u to be negligible relative to 1/)j. In this case,

•~~ ~ ~ (lk) ,.: -,

, from Eq. (9)
e2,2 i- -f U 79ON (10)

U N

Note that p(k-0) increases as M increases and qets its maximum as M . In
this case, the system can be apprxoimated by an MIG1m system with birth rate).
and death rate k)P (k > 2), because there is no queuing in the system due to
i e diate restarts in case of conflicts. Hence the maximu= value of p(k-0) is
given by e-V/ Applying Eq. (3)

" P > 1-e 1 e- -1) (11) :.:.

,+ +

N
if c e < VW- we get from Eq. 11)

72

i e M

-I+ z.e(e-)/p

Since 1 , we get for X/V -< 1

>' (12)

R L.-

.*o . % 4 . . . 4..- 4

.* . 4 , 4 4 4 •44. % % ,

-102-.

5.3.2 Overview of the Bounds Obtained for . 0

From the analysis above, the various bounds obtained for p hold for certain
ranges of values of X/ji, 8 (or both). In cases in which more than one bound

*. equations are applicable, one should select the best lower bound. In order to
evaluate the various bounds, we proceed to obtain the exact solution of the model
as a Markov process by numerical methods. A description of the method and results 0
follows in Section 5.3.3. we found that the bounds

S-0 X. for < N'

and for < 1 and <,n (1-X/D)

approximate the actual value of P very well from below for M > 100. The bound -

Re + (1-e) (M-l)
yields effective results for small M's (M < 10). If an accurate estimation of
2(k) can be produced, then the bound

1

1+ e E W(k)

6 2

approximates p very closely from below in all cases (see Table 3).

Finally, for N < 100, the computational effort for an exact solution is accnp-
table, and it can be used to get an accurate estimation of R if necessary. Let
us now give a brief summary in the following table with the following notation:

I,,

'..o

5

5.

. ,-- . ° ° ,,%- S . • . -. , . - % - .%

° o ~ o

°•o . . .*-. . , . . - .o* * - - . - ,o ° .*°.. ..,.,. .-,_ .•% •. .°. . . , . , • ". % - ,. % . - . . . ", '. ' . - • . . , % _".,

- -.. • +...77-77:: .1-7 77 7 7 ..+._

-103-
4... ,'"

L I, PLOG-

PTH M + 1(1-O1M-1) PK
1 + E W.-E

Table 1 M > 100

< bst of PL, PLOG, PTH best of PL, PTH

"2M beat of PL, PTH best of PL, PTH
-. -' (PLOG if applicable)

Other .
high best of PTH, PK best of PK, PTH
values

Only if E(k) can be estimated. (Numerical solution
is implicitly assumed for each case).

Table 2 M < 100

M < 10 PTH or exact solution

10 < M < 100 max(PK,PTH) or exact solution

'1~ 2
For X/60 >> max(l, 82 /-8) the derivation of analytical tighter lower bounds of
,, is under current investigation.

:'-

Evidence from the simulations conducted at CCA [] indicates that
performance is considerably degraded fro high values of X/U . Consequently,
it could be the case that further analysis for such cases may not be necessary
for the operational range of existing systems.

'- ..- .,

S%.. %

..-... - .+ -:*. .

,-, $''.,, ..,' : ,,;,,.. ,. ,.+..' ...,,.,.. ' . . .+ .• . "+.. *.. ...+ •.+f. .

-104- .

5.3.3 The Computational Solution of a Markov Process Describing the Actual System

We developed by numerical methods the exact solution of the global balance state
equations for a system consisting of M granules and a CPU (feeding the data-
base) with maximum MPL equal to N. We assume that restarted and new arrived
transactions join the queue of the CPU. The system is modelled as a Markov
process with state vector (j,kj) where j < N is the number of transactions in
the CPU queue and k < M is the number of active transactions; I is the total
3ocks held (k < I < R). We assume that when a transaction completes or restarts,
it frees a number of locks which is a random variable uniform in the interval
1, I-k + 13. The other parameters of the system include the CPU rate (;CPU),
the input rate X and the granule service rate u' , 9 is the exit probability,
as in the simple 2PL model. The solution of the global balance equations is
produced by the power methd of finding the eigenvector corresponding to the big- . -

gest eigenvalue of a stochastic matrix. This method is preferred because it has
minimal storage requirements.

For more details on the method, see [S-78]. Our results show that the lower
bounds PLOG,PL work well for M > 100. PK works well for any value of M, if
E(k) is known. For smaller M, either PTH or PK is suggested. For very
small M (<50) the computational effort is small and the exact solution can be
used as an alternative. All our bounds were validated to be true pessimistic
bounds (reference Table 3). * °.

° .

*A-. Aft

-

l*T -.@1

. * - - . N *." .

-105-

Table 3

Results from the Computational Solution

(1) M <l0, N < 10

1JCPU V' N M PK

3 2 2 2 2 .2 .78 .089
4 2 5 2 2 .1 .62 .019
3 2 2 3 3 .2 .60 .1
4 2 5 3 3 .1 .34 .022
3 2 2 4 3 .2 .59 .104
4 2 5 4 3 .1 .34 .022 -w
3 2 1.9 4 3 .5 .901 .609
3 2 2 2 4 .2 .52 .11
3 2 5 2 4 .1 .24 .2
3 2 1.9 2 4 .5 .9 .66
3 2 2 5 5 .5 .91 .71 S

3 2 1.9 5 5 .2 .56 .136

4 2 5 4 5 .1 :28 :26

4 2 5 3 6 .1 .32 .32
3 2 1.9 3 6 .5 .92 .74
4 2 5 10 3 .1 .29 .2
3 2 1.1 10 3 .5 .914 .625
3 2 2 2 10 .2 .75 .26
4 2 5 2 10 .1 .52 .17

Note: -actual value

-mK

1 + 1-8)

(2) M4> 10, N>l10

JCPU 11') N 14 e PR PB

3 2 2' 10 10 .2 .69 .61 .62
4 2 5 10 10 .1 .49 .37 .15
3 2 1.9 10 10 .5 .88 .72 .62
2 2 .8 30 30 .5 .96 .94 .49
2 2 1.9 30 30 .5 .92 .9 .87
3 2 2 30 30 .2 .56 .27 .25
2 2 .8 50 50 .5 .96 .94 .96
2 2 1.1 50 50 .2 .66 .64 .56
a 2 .8 50 100 .19 .83 .83 .82
2 5 .25 50 100 .05 .07 .07 .05

Note: PB is best of PL, PLOG, PTH.

0 -P 4. 4 .

V -- 4% - 17 W. '077 IT

-106-

5.3.4 UpperBound on the Average Number of Resta-ts Per Transaction L. 0

Let ; denote the average number of restarts per transaction. Then

i-)'

1 (13)

F.. rocm Eq. (3)

-- 1

e.5.

[E(k) + p(k-O) - 11]14

From Eq. (4) *.-

n < - . E(k)
-2

N-

In general, if PBEST is the best lower bound on p (using Table 1) for each r
case, then

n< 1
- PBEST

A general conclusion is that if 3m constant , in> 1 , such that .9 > m(A)-

then W is small for M . This conclusion applies well to cases where M > 100. "7.-

5.3.5 Average Response Time of a Transaction

The average response time W of a transaction is bounded above by -""

• (I/ + U) - (Uip) (1/li + u)

For N > 100, we can use
I (i/) l<i' ,--

where , as an estimation of , the best value of PL,PLOG,PTH,PK can be
used.

This completes our analysis of simple 2PL, an algorithm which should be viewed as
a useful theoretic tool to get Lr.:rat oase performrnoe bounds of any dynamic 2PL
method in terms of restarts. In the next section, we shall proceed to the more
general dynamic, 2PL analysis.

................ *.5-4

.. -,.. ' .' .' -. - .-. ,,.,* .. . -. . .% ,. . ,... .-. "9 .* - . ,. .. , - . ' . . - . . -- j

V. .- , , , , ' , , . •. ' .

-107- '

6.0 THE GENERAL CASE OF TWO-PHASE LOCKING AND THE PROBABILITY OF DEADLOCK IN THE
STEADY STATE

From the "simple" 2PL analysis. we now consider the more general case of 2PL. We
shall begin our discussion of the general case of 2PL with an overview of the
mechanism and the related concep'_s. Primarily ,,,? are interested in an analytic
model to estimate the steady-state rates of conf2icts and deadZock in a database
system with general 2PL policy. We assume that each transaction T seqAent'iZzy

." requests locks on a randomly seLected set of data items. All locks are assumed to
be a=Zusive locks; i.e., T is granted a lock on data item X only if no other
transaction currently owns a lock on X. If the lock request is denied, T is -

placed on a FIFO queue for X. All locks held by a transaction are released
* .. simultaneously when the transaction completes. The input process of transactions

is assumed Poisson of rate A. Let us consider the waits-for graph at time t. --

The nodes in this graff represert all active transactions and the edges indicate
which transactions are waiting to obtain locks. In particular, there is an edge
froM T to T' if

(1) T' is immediately in front of T on the queue for some data item X or -

(2) T is the first transaction on the queue for X and T' currentZy owns
a Zock on X.

Note that there can be at most onze edge emanating from any transaction T because
of our assumption that transactions obtain locks sequentially. T is said to be
blocked if there is an edge emanating from it; else T is free. New (or re-
started) transactions enter the system as free transactions. Whenever a new edge
is added to the graph, it must emanate from a rreviouaZy free transaction (since

free transactions are the only ones that can request locks). We shall assume that
the probability of adding more than one edge to the graph in the time interval
(tt + dt) is negligible. In our analysis we assume that deadlock is handled by
a deadlock detection algorithm: As soon as a deadlock is formed, an "oracle"
detects it and breaks the deadlock cycle inatantaneouZy.

Furthermore, all processing requires finite time. Based on the above assumptions,
let us next consider some of the properties of the time-varying waits-for graph.
Two properties follow immediately:

Suppose transaction T is blocked by transaction T' at time t. Then (1) if
T and T' are both blocked at t and the edge (T,T') does not belonq to a
cycle, then (T,T') will still be in the waits-for graph at (t + dt) (since

- processing requires finite time). (2) if T' is free at t, then:. either (T,T')
will remain in the graph at (t,t + dt) (if T' does not complete at (t,t + dt))
or (T,T') will disappear during (t,t + dt) (if T' completes or restarts
during that interval).

.7-7

-p

".. .. -.-.-.... -. •.-.......... . . .- '_. "........ ". ' ., '" ,. "". "..

-108--

From these properties we derive the following state transition diagram (from t 0
to t + dt) 'for a single transaction

h0

" blocked by a --c.d b
free trans- blockedtrans-action action -. '

Figure I

LEMA 6.1. (1) If we exclude the moments at which cycles are formed and broken
by the oracle, then the waits-for graph at time t is a forest of trees, whose
roots are the free transactions and the other nodes are the blocked transactions.

N. . (2) A deadlock can be formed at (t,t + dt) only because one root is blocked
by one of its descendants.

- . For the proof of (1) recall that a transaction can only be blocked at one data
item by one transaction. To prove (2), recall our assumption that the probability
of adding more than one edge to the graph in (t,t + dt) is negligible.

2 Next let us consider the trees of the waits-for graph as "nodes" in an evolution-
ary random graph. Each "node" has a "size" which is the number of transactions
in the corresponding tree. The following operations change the graph dynamically
from t to t + dt:

1. An edge is formed from the root of some tree T to another tree T2 .
(T2 pf TI) . Let size.(TI) = sl and size(Tj) S s 2 . Then the two trees merge to a

.-'. mingle tree of size s1 +

2. A new tree of size 1 appears whenever a new transaction enters the system.

" 3. When a cycle is formed from the root of a tree to one of its descendants, then,
the oracle immediately restarts some node participating in the cycle. For pur-
poses of this analysis we shall assume that the oracle restarts the root.

4. If one root completes, then a number of trees equal to the number of its
-- immediate descendants will be formed.

". 4. -..•

.. ,,,..

.s -- o . .

a7X

-109- .

For further analysis, we make the following assumptions: i) The service time "
distributionffor each free transaction in a data item is exponential with mean 1/'

* (rate U). (ii) After a local completion, a transaction exits the system with
- probability e and requests one more lock with probability 1-e, 0 < e < 1. -

(Note that, according to this, the average number of locks a transaction needs is
1/8). (iii) The probability that a particular root will form an edge with a
particular tree at (t,t + dt) is proportional to the size of the tree. This -
assumption can be justified if we accept that each transaction locks (on the
average) the aw'te nwi'ber of data items and all data items are accessed uniforZ'zy.

7 Let us now define the states of the system:

A state of the evolutionary random graph is an n-tuple (s 1 , ... ,Sn). where n -

number of trees in system at t and s i - size of tree Ti at t.

Let Pij - Prob(Ti will conflict with Tj at (t,t + dt) given Ti locally com-
pletes and requests another lock).

According to our assumption, p - a's- for some constant a (depending on
current state). The total number of transactions in the system is s a Zn=l s i5
when the state is (Sl,..s n). Let M be the total number of granules in the

.. database. The total number of locked places will be apprxoimated here by the
average total number of locked granules, a pessimistic estimation of which is
equal to /e Vn si . By using the above approximation,

i-l
ProbT will conflict at (t,t + dt) given it locally completes at t) +*Prob(T i will not conflict at (t,t + dt) given it locally completes at t) is

" equal to 1.

Hence,

in-" M-F il Si "."-.

J-1 Pij + M

- implying a - 1/eM.

' " '.X

......... . • ,

.................... . -. . . .

-110-

LEM 6.2. Pj (1/ Vi)s. Vi, Vj. When the system is in state (Sl.'.s n) at
time t, the overall probibility of .deadlock will be given by

n(1-e) (lidt) ZI-iPi ""'

From this Lemma, we can readily derive:

n
rate of deadlock - -- Zi 1 s

rate of conflicts at t:

i-l j-1 Pij M e .-..-

which imply that for state (sis~i..n|°'2# .. Is.

rate of deadlock _1
rate of conflicts n (a 6.

(Note that if we want to take into account the fact that a transaction will not
- N cause deadlock with itself then we can use a more refined assumption:

ij -s if i(Aj (A)

Reasoning as above, the value of C1 will now be

1 where s Z ss-I= i-i _ £-
%>%

For large s, a c 1/@O again. Approximating then a by i/M we finally get

rate of deadlock" s"1-"M 0

" -rate of conflicts at t - n s-nMe

. which imply that for state (slS2r...,s n)

rate of deadlock s (
rate of conflicts - (s-l) n (Eq. 6.13)

which is a-i/n for large s.)

For reasons of clarity we use the "crude" assumption (piJ " sj Vi Vi) irr
the analysis following. i

_. .-. . -. - -"

.''r. .7'' " .

-. w171-0

We now consider the probabilities of the possible state transitions of the system
(from time t to t+dt).

with prob -d

(2) A local completion and a conflict (not a deadlock), for n > I

Ti ZS

where st s. +s.

with probability (1.dt) (1-e) dt

(3) A deadlock (the root in a tree completes locally and then conflicts with its
own descendants).

<I j ~n Vm 0,.s -l1I

such that

AD + s + +s9. s. -1 and S > 0
J2 m

The probability of this transition is

(ljdt) (1-8) em Prob~mj deadlock in J) multiplied by

Probs 4 9 .. sIm and deadlock in J)
*i il m

Obviously, m is the number of immediate siblings of the root of T. just before

* . the deadlock.

t -@

-112-

LVO 6.3. The Prob{mldeadlock in P Prob(the root of T has a immediate
descendants at time of deadlock) can be approimoted by.

R(m,s)
for all a 1,...,s -1

N(s)

w'her'e

R(m, s) - number of trees (labelled) of s nodes and a distinct specified
root whose degree is m

and

N(Sj) - number of labelled trees of sj nodes and a distinct specified
root, (1 < degree(root) < s - 1)

. suCh that the foZZl ing hoZd for R(m,s1) and N(s.)-

k-2(I) 1N(k) - k k > 2

(II) R(Mk

vCk,..., k) " ~~.....m

V~kif---- M)

such that k +...n+k -kk-r--i
1 m

Po A m u+mi) (k 2+i cofics m se

"R (in, s.)

k kp

".."with 1 < m < k-1
''" (III) N (1) N N(0) 1 by definition.

Proof. Assuming uniformity in the way trees merge during conflicts, at steady ch' state# Prob{m~deadlock) will indeed be equal to --"

'3" R (m, s.)

':-:: N(k) by definition is the number of rooted labelled trees of k > 2 nodes and
- ' - can be shown to be equal to kk- 2 [Ca, 891. Note that the trees-are labelled "

since we have distinct transactions as nodes, and that the class of trees which "'

" define the same partial order (with the ordering i < j o i is son of J) must
be counted as only one tree.

To form R(m,k), 1 <_ m < k-i, m sons of the root are to be selected from the
k-1 nodes in

(ki)

ways, and for each of them, partition the remaining k-l-m nodes in m groups
(group i has ki nodes, 0 < k. < k-m-i, 1 < i < m). Then count all possible

: ways of selecting labels for eaci of these m groups and for each k. and one of
its labellings, we have to count all possible (labelled) rooted trees formed with
k +1 nodes.

-

- -"-. --.

-113-

.-.'.-. 3-21
,--OXLE. (3)-3 (3L

a I Q Note that 0A band b\ count as 1 tree0
b C

oI lb bI c since they give the same partial order.

R(2,4) = 6 - 3(1+1) 0
C.L. CL a aCL a .

b(c b d c b c d d c d

a "' c d b b c --

_n order to calculate the transition probability due to deadlock, it is necessary
to consider the prob{sj ,...,sjlm and deadlock in sil. When deadlock occurs
in the j tree, th, - I descendants will be fragmented into m new trees

0 <_ m < si 1. This process is analogous to grouping s4 - 1 into m random
partitons. The probability of a certain partition is [FI, 661(S .

Prob{s s Im,•s - slI. " -1.-'

We, therefore, conclude that the transition due to deadlock,(Bil' •s.Isn (Si' .. "sJ1 S F.'')"'''• '11 ""

has probability

1- R(m's (sJ-lI!N(S ..-.S I.

(.ll

(4) A departure from the system. (A root totally completes and departs.)

vj Vm - ,l,...,s -l

1•1,.. ' s '• 0 .' s ' n1 - (•l " "" '•J-1' (J '" "' J) 's l ... "'Sn) 2iim

(where the root of T completes). By the same reasoning as in the case of dead-
lock, this transition has probability

(lidt) - * .N (s) s •. -m! (13

where
' '. " 8:~~JI + •'J"2 + "" + • i ..- I:''-..

... +":-.: -

.' ."." " ." :" " "- ".i-'" ':.'v . ." ". . . -.- ". " " " ". " ' - - " "- - -" - • - " - :" " ' 2".

-114-

on identifying all the transition probabilities, the process is now completely
defined. Due to the complicated transitions arising in cases of deadlock and total
completion, in general the process does not necessarily observe the one-step
behavior as defined in ID-B, 78]. Consequently, it is conjectured that the closed
form solution for the steady state probabilities is unlikely to be product form as
defined in [BCIW, 761. Neverthe less one can obtain numerical solutions for the
problem, should the closed form solution fail to exist.

From the steady state solution, ye can now compute the conflict rate r c and dead-
lock rate rd at steady state

S.[-s(n -prob(.....s]

and

rd. - prb.l .. Ps

r.--. 11"5.1-"

Sstates J1n

*(remark rd rc *1/n for all states in state space.) Note that rc and rd
only require the aggregate joint probability,

fM,s) -Prob (sms8)

where
n - number of free transactions in system

form thouteiof feor k ahe steady state i prolitesi nliel to e rgec fobrm of
trasaion in theP system aenthees one ofcanf obtai numraoutions tor the ean.-
proe ho the cs eore soun fi nubro frei astost inhesyte

and~ ~ ~ s -oa number of transactions in system.

(ote Fr t y the arove, eie oluea mpte Ahe old gt

lockA 6.4. - tsedsae€- --

r - 1-8 1-

- E(s) - fn-

02'th rteof"e. olc t tgstatej~ i'"ootinZt hea.eae w ro
t" ranato.dnte y"en adteraeo on"'-ispootinZt tem

vaueo thej produtnbhr -nme ffe trsactions ntesse

. (ar rd -totoalln erota sats in tre ste.) oeta adr '
(N=otey thatrbyusingteat e rfined assuation, A'e wuldge

i- "ii fi(En~s) - EProJ). = :-1=---0-

- ., . .

r n ne o Eern)]nyt"-

= t,,C'

Note that the results of this lemma contradict the assumption in [R, 79] that
the multiprogramming level has no affect on the performance in 2PL systems.

6.1 SxNULATxbN ANALYSIS Or THE 2PL ALGORITHMS

Recently, some simulation studies are performed to analyze the performance
of the 2PL methods. [L-N, 81). The overall system model is very similar to the

'" model here as described in section 5. There are more general assumptions in the
simulation which include the Erlangian service times at the granules and constant
times for the hops. The study focused on larga databases (3000 < M < 12000)
and simulations are carried out for both the "simple" and general 2P L. Their

S" major results agree very favorably to our results. For example:

(1) The number of transactions in the system affects the overall
performance (thereby contradicting Ries [R, 79] and agreeing
with the results of lemma 6.4.

(2) The number of transactions under deadlock increases almost
linearly with the number of locks held by the active transactions
and the multiprogramming level, validating our results of equations
6.1 and lemma 6.4 (r proportional to I E(s)).

d

(3) The rate of conflicts increases more than linearly with the
multiprogramming level (close to quadratic in heavy traffic)-..
validating our second result of lemma 6.4 (F proportional to
1 E(s.n)).

(4) Similar locable unitls imply a smaller probability of conflict, -

as we expect from the analysis of section 5.

7.0 CONCLsION

We developed an analytic model for the general 2PL, which can be used to estimate
the stead state rates of conflicts and deadlocks in the system. Under reasonable
assumptions for transaction behavior, we found that the rate of deadlocks is pro-
portional to the average number of transactions in the system and the rate of
conflicts is proportional to the mean of the product of the number of free trans-
actions in system multiplied by the total number of transactions in system. Since
the rate of deadlocks is equal to the rate of restarts and because restarts affect
directly the number of transactions in the system, continued analysis is important
for further understanding and quantification of the system performance under this
feedack effect. The next step in our research will be a system model using
decomposition and the results obtained above.

:Vk *

. °.

-116- --

RF RENCES

. 13 [BCP, 751 saskett, F., Chandy, K.M., Muntz, R.R., and Palacios, J., Open,
closed and mixed networks of queues with different classes of --
customers, JACM 22, 2 (1975) 248-260. 0!

[2] (B-G, 78] Bernstein, P., and N. Goodman, "Approaches to concurrency'
%' control in distributed database systems," Harvard University,

Center for Research in Computing Technology, TR-26-78, 1978.

[31 [B-G, 80] Bernstein, P., and Goodman, A., Fundamental algorithms for
concurrency control in distributed database systems, CCA TR
Contract No. F30603-79-C-0191, Cambridge, MA (1980).

[41 [BSW, 79] Bernstein, P., Shipman, D., and Wong, W., Formal aspects of
serializability in database concurrency control, IEEE Trans.
Soft. Eng. SE-5,3 (1979) 203-215. .11

[5 (Ca, 89] Cayley, A., A theorem on trees, Quart. J. Math 23 (1889)376-378.
* ". Mathematical Papers, Cambridge, England, 13 (1897) 26-28.

[63 CD-B, 78] Denning, P.J., and Buzen, J.P., The operational analysis of
queuing network models, ACM Comp Surveys 10,3 (1978) 225-261.

171 [Fe, 66] Feller, W., An IntrodAction to Probability Theory and Its

Applications, Vol. I (Wiley, New York, 1966).

f83 [Ge-S, 78] Gelenbe, E., and Sevcik, K., Analysis of update synchronization
for multiple copy databases, Proc. 3rd Berkeley Workshop on
Distributed Databases and Computer Networks (August, 1978).

[93 [GM, 79] Garcia-Molina, H., Performance of Update Algorithms for
Replicated Data in a Distributed Database, Ph.D. Thesis,
Computer Science Dept., Stanford Univ. (June, 1975).

[l [Ha, 69] Harary, F., Graph Theory, (Addison-Wesley Series in Mathematics,

1969).

[113 [Klei, 76] Kleinrock, L., Queuing Systems, Vol. I (Wiley, New York, 1976).

[12) (L-N, 813 Lin, K and J. Nolte, "Performance of 2PL," CCA TR, 1981

[13 (M-N, 79] Menasce, D., and Nakanishi, T., Optimistic Versus Pessimistic
Concurrency Control Mechanisms in Database Management Systems,
Dept. de Informatica, Pontificia Universidade Catolica do Rio
de Janeiro, Brasil (1979).

U I [(P-L, S01 Potier, D., and Leblanc, P.L., Analysis of locking policies in
database management systems, CACM 23,10 (1980) 584-593.

S [153 CR, 79] Ries, D., The Effect of Concurrency Control on Database Management
System Performance, Ph.D. Thesis, Computer Science Dept., Univ.
of California, Berkeley (April, 1979).

b .o.

• :.,:,...:..:. ,...-... -. -. ,,, - . - .. ,. , <... * :.
., ,. . . :.--. - : . - -- . . .

L7. 7-r
-117-

('16) [RIS, 78] fosenkrantz, D.J., Stewas, R.E., and Lewis, D.M., System level
concarrency control for distribute~i database systems, AC14
Twaoation.8 on Thtabaoe Syjat"m 3,2 (June, 1978) 178-198.

[171A [S-78] Stewart, W.G., A couparison of numerical techniques in Markov
modelling, CACM (Feb, 1978).0

L18J (Th, 79] Thomas, R.H., A majority consensus approach to concurrency
control for multiple copy databases, ACM4 Trazsaction8 on gatabaae
Syetwa 4,2 (1979) 180-209.

[19] [Th, 781 Thomas, R.H., A solution to the concurrency control problem for
multiple copy databases, Proc. 1978 COMPCON Conference, IEEE,
Now York (1978).

010 .

.1A

.7 V. 7 7 7

SECTION V

A SIMPLE ANALYTIC MODEL FOR

PERFORMANCE OF EXCLUSIVE LOCKING

IN DATABASE SYSTEMS*

Nathan Goodman

Raa Sur 1jJf L..

Yong C. Tay

*To appear in the Proceedings of the Second ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, March 1983. .

*f

7- -... 77

-119-

1. INTRODUCTION

Concurrency control in database systems is the coordination of con-

current access to shared data. Much is already known about the design of

concurrency control algorithms in both centralized and distributed systems;

the majority of these algorithms are in fact just combinations of two basic

techniques--locking and timestamp ordering IBG], and there is now con-
J1

siderable interest in understanding the performance of these two techniques.

In analyzing any system, it is frequently true that an appropriate

model can provide better insight than a simulation study, and at less cost.

To date, most performance analyses have been done either experimentally

[LNlLN2,K,RJ or with Markovian queueing-theoretic means IL,G,PL,SS].

This paper introduces a new framework for analyzing exclusive locking

that uses none of the usual assumptions of queueing theory besides Little's

Law [K]. For example, we do not assume that certain quantities are

exponentially distributed. The model presented is easy to understand and

costs little to solve computationally, yet captures the essential features

of the system it models.

The new framework is presented in Section 2 in a general form. Then,

in Section 3, we use the framework to consider the case where there is no

blocking. The resulting model is applied to analyze three different systems

in Sections 4, 6 and 7. Section 5 presents simulation results that validate

the model for the case considered in Section 4. Conclusions about the :

systems studied and the model itself are in Section 8.

-°-"

AN" . ,% %,r%:
-A-*r4 .:--:.-... .

7-- 71.

-120- -.

2. THE FRAMEWORK

The database is a collection of data items. Each transaction makes a

sequence of requests; the time between the i-th and (i+l)-th request is the

same for all transactions. The 0-th request is a request to start

(immediately granted), and the i-th request (i l) is for either an

exclusive lock on a data item, or termination. Let prob(i-th request is

for termination) =Pi' P0 =0.

When a transaction makes a lock request, it is immediately granted if

there is no conflict; otherwise, the transaction either waits or is re-

started. Let prob(conflict) =p. Requests for termination are granted

V immediately, and each termination starts another transaction (so the number

of transactions is constant). A transaction releases its locks if and only

if it is restarted or terminated.

The model for this system consists of two parts. The first is the flow

diagram illustrated in Figure 2.1.

The second part of the model is a set of equations describing the

behavior of the system. These equations are derived using the steady state

average values of the variables. The underlying idea in our approach is to

characterize the system in terms of these average values, instead of detailed

dynamics involving instantaneous values of each variable.* The input para-

meters to the model are:

N - the number of transactions in the system.

D - the number of data items; this specifies the granularity.

p1 -the probability of termination with i locks, i= 1,2,...

@1 1

It was pointed out to the authors by Ken Sevcik that a related approach has
been proposed for large multiclass queueing models [LZ].

.. . .

-121-

Figure 2.1. Flow Diagram for the Model.

NO No .. NI

t0

N. is the number of transactions with i locks that are executing

W. is the number of transactions with i locks that are waiting

a. is the abort rate of transactions holding i locks

t. is the rate of termination of transactions holding i locks, t0 0.

We refer to each N.V as a stoge. The time T between the i-th and

4o (i+l)-th requests is assumed to be a function of i, the number of

executing transactions N = I N., and the number of waiting trans-

actions N I W..
w 3

j-0

d - a function of i which is a measure of the interval (such as the

number of instructions) between the i-th and (i+l)-th requests.

T - a function of N and N specifying the time taken per unit--- e w

measure of the inter-request interval (hence T (i,N,N w) =
ep W

.- d(i)T(N ,N)); T reflects the effect of multiprogramming on
e w

the rate of execution.

O"'-"

.

.40 -122-

- a function of D, N= (N0 ,N I ..) and W= (W0 W

characterizing the conflicts; it specifies the dependence of the

conflict probability p on D, N and W, i.e. p=TT(D,N,W).

Given these inputs, the task is to determine N and W, and hence deduce

the values of various performance measures. 0

In this paper, we shall restrict our attention to the case where no

waiting is allowed. There are two reasons for this: Firstly, it is

easier to illustrate the approach in our framework. Secondly, even this

simple case provides some useful insight, and it will guide us in

* analyzing the waiting case.

- -. - S - - . ,- .- q "

* -. *. ",. -

. '. '-." " ' - -' - -- -'---- - - - - -"-.- -.- -.- --- •- -.-- - ." . " - - "- . " " .. "*" .. " 4.- - °

-123-

-r"°

3. THE NO WAITING CASE

In this case, a transaction requesting a lock is restarted whenever - -

there is a conflict. The flow diagram has the simplified form in

Figure 3.1.

Figure 3.1. The No Waiting Case

Thn sic N. = a N i so

Usn itd ste, wt he r

For convenience let dei) be independent of i, say di) I for all i.

Then, since Ne = and N = 0 in this model,

(Inter-Request Time) T T (N) (3.1i) e.

Using Little's Law, Ni r rT in steady state, where r i is the rate at.'-"...

(Little's Law) N = rT where r = t + I a, ij 0,l,2,...Ai i j=i J j=i (3.2)

Since the number of transactions in the system is held constant, we have

(Conservation) N N. (3.3)

JJ

* Now, pi tr. or t = r By (3.2), ---I@

1-112 .. 134).1-

(Rate of Termination) ti "N i-1,2 ,... (3,4)
T.,

.

-124-

Similarly, since at each stage, the rate of lock requests is (1-pi)r i , so

a.
Ip (l-p.)ri ,and thus

(Abort Rate) a. 1."...
i -T p(l-Pi)Ni i=0,1,2,... (3.5)

Since we are considering the case where there is no waiting for a lock,

(Probability of Conflict) p = 7r(DN) (3.6)

For arbitrary i and T, p--and hence N--can be evaluated by solving

equations (3.1)-(3.6) (for example, by iteration).

To continue with our analysis, we shall henceforth assume there is

uniform access,* i.e.

7T(D,N) =- jN . (3.7)
~ Dj=l J'""

Fact 3.1: The probability of conflict p is a solution to f(q) =0, where

j c

f(q) j=l (3.8)
(l-q)

". I c.q3

j=0 "

= c-landc.'"-

q 1 p, , c=1 and c. (-p.) for i=1,2,...
j-0

* if one assumes that a transaction does not request for a lock it already

*holds, then this expression should in fact be (jN - /(D-i) for a-

j-1

transaction with i locks. The two expressions converge if i<< I jN.
j=l

[TSG) considers non-uniform access. '

- - °..%.".-.

., .•.

.- " ".%

-125-

Proof. By (3.2),

N r ti+a p~r,+~-,r
N r. r. r

Hence

N - q(l-p.)N.

or

N. N 0 I [q (1-p.) C c q N0 for i-0.... (3.9)
v 0 ~j-0 i 0

Using (3.3)

N c j N
j-0

so

No (3.10)

I c.q~

Now, by (3.7)

c.qN0 ' cD - D N j' i

or jcq

(1-q) - X '~

Hfence the claim.

Remark: For uniform access, the effects of N and D are expressed

N
-through a single parameter A which we call the Zoad.

.1ThC following fact indicates that f is well formed.

Fact 3.2: Given A and c.f j-1,2,...., f has exactly one zero in 10,11.

. -126-

Proof. Let g(q) -I jc q3 and

h(q) (1-q) Ic~qj , " -c, c 1 - (C -c)qJ.
Sj, j, O j= " 1 -" "3-

Since cj (l -pj)c_ 4 c we have cj - c.) 0 and so h(q) decreases

i->- as q increases, whereas 9(q) increases as q increases. But f (q) =.•.

A iwr g(q) 1, so f(q) increases as q increases. The claim now follows from

the observation that f(0)--1< 0, lim f(q) - + and f is continuous on
q-*1'. [0,1).="''

Furthermore, this zero behaves in a manner expected of it.

Fact 3.3: Given c., j-1,2,...,prob(conflict) increases as X increases,

and lim+ p =0, lim p - 1.

Proof. For fixed q, f(q) increases as increases. Hence the zero q,

in [0,1) must decrease as X increases since f is monotonic increasing

on [0,1). (See Fact 3.2 and Figure 3.2). Since p= 1-qX, p therefore

increases as X increases. Now

0 < X~ I jc qj < X 3 c. so li + 3c q3 =0, and
J-1 j= jX-KO j-l

j-0 j-1

Since f(q) - 0, we have '

3:
X I jcq .

D < (1-qX) 0 < jc q X':
c- c q j j--1

j-0

Therefore

),.'.. • ,. ." .'-, . -.. . ". .. ". . . .- "o-'.- ' , '.', ".. - . , -, . , 1, " -'.-'. '.- ".- .-. " -. '- " - .- -'.." ." " .- - 4

• . ,. . .,, ,. . ., '.., '.-*., .. - .. ,..-....- ,.'. .. . ,,-_.-.. - . .- .-. .. '.-., .. '.-,-"
i : • 7. : " " . *. .,"," ' " " J ,"- . , , .' ., , '- - , " . - • - . - . .

-127- -

0 l (1qik i j 0n i.e. 1i p-0.
p.

Suppose lim p<l1. (The limit exists since p increases with X and is

bounded above by 1.) Then li q - for some 0 <C:41, and

jc C~ (1-0 I o C C

iji f~Q =j=1 J.0 3

""I

j.0 :3

= lim jc 1 C -1+ c (c-1 -c)C
-C. i

."0

j=0 3

+00, which contradicts the definition ofq.

Hence lim p ".

Using the zero . one can compute N using (3.9) and (3.10). From

(3.4), the throughput is then

j-1 j -1

and, from (3.5), the abort rate is

a- a. -N pN - -(pjNj (3.12) Z

:''-"(Ncj-0

-"- ;-l T- i -i"-

-no j=0

-
-.

Other Performance measures like the ntumber of locks a transaction holds

.. > li 1 N.' -when it retrt/emiae, whishponetraiets terefnsation adof q trans-:

n t nat wer r .

-128-

Figure 3.2 q. decreases as X increases.

OfI

Al

qA, Ct

46I

--.- -%7-*- -

-129-

A. CASE WHERE ALL TRANSACTIONS REQUIRE k LOCKS

We first apply the model to a systemn where all transactions require k

locks to complete. in this case, the flow diagram has the simplified form

in Figure 4.1.

--- --

Figure 4.1. All transactions require k locks.

1 i-k

0 otherwise

--

As for the equations, we have, from (3.8),

(o i>k
C. =(4.1)

11~ 04i~k

and hence

k
Sjq'

f (q) - X jal -
1-q k

q
j-0

_____ k k-l
- k;71 (kq + (k-l)q + *+q)- 1 (4.2)
l-q

Equations (3.9), (3.10) and (4.1) now give N.- -0 for i > k and

N. - for iOl.,k. (4.3)k k+1
1+q+..+ql-q

From (3.11) and (3.12), the throughput and abort rates are

,-.9,

-130-

1 N (q)g (4.4)
T k- T k+l

and 1""

a - (N -N.)
__ N 0/":

(l-q ____-____,,,

T k+lq k1

k
N (l-q) (1-qk) (4.5)

ST -q k+l

The zero in [0,1) of (4.2) is found with the help of MACSYMA* for

various values of X. We shall compare the numerical solution to some

simulation results in the next section. First, let us analyze the asymptotic

behavior of the system as predicted by these formulae.

Fact ~..1: For small X and k (i.e. <<l and k< 10 say)

kN (i)t N
" M (ii) t (k+l)T (iii) a = kpt

Proof. By Fact 3.3, qol for Xsv0, and hence qkol for small k.

Using this approximation on (4.2),

.9 k

.f(q) - - - ---

j-0

soo

Xk k N

2 T '

' *MACSYMA is a large symbolic manipulation program develoepd at the MIT
Laboratory for Computer Science and supported by the National Aeronautics
and Space Administration under grant NSG 1323, by the Office of Naval Research
under grant N00014-77-C-0641, by the U.S. Department of Energy under grant
ET-78-C-02-4687, and by the U.S. Air Force under grant F49620-79-C-020.

,'~~.... .r.,. -. •...-............. , * -7. . -. ,R- . %.
-- , ,• ,- . . , . X • -..o . -, . ° . . . , , .. . - . • , ,- . . • - ..

" '"'''''"" [" %"" " " "" ' "5 ""°- ".". . .- "' " "?%" °" J" -",".. ."..",.,.. .,. .'.".". . i,

-131-

..
.:,

For throughput, by (4.4),

k
t

ok (k+l)T
14q+...+q

k
Now, (4.4) and (4.5) implies a - - I

t k -k1 s0
q q

-.k
"a ((l-p) -l)t

ft kpt since powO and k is small. 0

Hence, for small A and k, p and t are linear in N. Consequently,

a is quadratic in N (but a/t is linear) for small A and k.

*" Graph 4.1 compares these asymptotes with exact solutions obtained by

solving for p using MACSYMA.
J

Fact 4.2:

lim p +

Proof. Since lim q k+ 0 and q q+ 2+-- +kq k +

k-..-qq (q) -

lim f(q) - - (q) say.
k- (l-q) 2

The zeros of f. are given by

2 2
(l-q) Xq =0 or q (2+X)q+O1 0

They are iI]

q _ (2+) 1 4

The zero ip [0,1) is q 2 , so p I -jq .+4X -X
21

* Graph 4.2 shows how this limit is reached for various X.

. . *...... . -..... . -.-... _ -.. . .. 2-+ --..-. +=+ , , . . ., -..- . . . -

W+ . .l % ... •.- . . ' '% ' . -. " . . ". . , - ' ' •- % ," "- <j " % . -: • . -: . ..

-132-

We now discuss the significance of these results.

Fact 4.1 confirms our intuition that, for small A, the transactions

hardly interfere (i.e., seldom conflict) with one another. For, with little

interference, almost all transactions are expected to terminate without

k
restarts, The average number of locks held by each transactions is then

k 1k
so that there are - N locks in the system, giving p = - (I N). Also, the

2~D 2
Nresponse time is (k+l)T since there are k+l stages; hence t = (k+l)

Finally, if there is scant interference, then the throughput through each

stage is t, the abort rate at each of the first k stages is pt, and so

a= kpt. Note that we have derived these three approximations simply by

assuming there is little conflict of locks, but they agree with the approxi-

mations in Fact 4.1, which are obtained by examining the solution to f(q)- 0.

Fact 4.2 and Graph 4.2 show that prob(conflict) is constant for large

enough k. Given X0 ' call the least k for which prob(conflict) is

within 1% of the limiting value the lock Zimit for X0 That prob(conflict)
0-

is constant must mean that increasing the number (k) of stages makes no

difference to the number of locks held. This, in turn, must be because the

number of transactions at the last stage is negligible. Thus, for a given

number of stages k0, call the value of X for which Nk0/N- 1% the

s 8aturation point for k We expect that, for a given X0 , if k is larger

than its lock limit, then)0 must be close to, if not larger than the
..' 0

. saturation point for k. For example, for a0 0.9, the lock limit is 5

(see Graph 4.2), and the saturation point for k= 5 is between 0.5 and 0.9

(see Graph 4.3).

The model also captures the phenomenon of thrashing due to concurrency

control and resource contention. Graph 4.4a is a plot of t for T(N)- 1

:': , + /.+",': :,, ,.:' .+., '-_ ,,..,5?,+... . -....- -.. ,,. .. +.. +.....................................

-133-

(i.e. no resource contention). We see that t decreases for large N due

to the restarts caused by the concurrency control. Call the maxima the

cc-thrashing point. On the other hand, suppose there is no concurrency

control. A typical T is an approximately exponential function that gives

a throughput curve like that in Graph 4.4b [DKLPS]. Again, t decreases

for large N, but this is the effect of resource contention--call the maxima

the R-thrashing point. Graph 4.4c shows the combined effect of concurrency

control and resource contention.

For a given k, one would expect the CC-thrashing point to be reached

even before the saturation point: From Graph 4.4a, the CC-thrashing point

for k-5 is at x0.25, whereas the saturation point is greater than

0.5 (Graph 4.3).

. -

* ,..

2 % ° .-.-. ° . , . .-.-. l-o ." - . . - ' - " " ' %

-134- -.

5. VALIDATION OF THE MODEL

The values of p as a function of k and A, and as computed by

MACSYMA using (4.2), are tabulated in Table 5.1. Tables 5.2 to 5.6 give

various performance measures computed with these values. "

To validate the model, we use a restricted version of the two phase

locking simulation program written by Oded Shmueli. In the simulation runs,

D-100, k varies from 3 to 6, and A from 0.1 to 0.9. In each run, "

30000 requests are generated, and the average performance measures computed

for the last 10000 requests (to avoid transient effects).

Table 5.7 and Graph 5.1 compare the simulation results with the figures

predicted by the model. The agreement is remarkable. Note from the table

that the ratio a/t varies from 0.5 to 230.0, so we have simulated a high

level of conflicts in some of the experiments. And it is precisely in a

situation of intense conflict that we expect deficiencies in a model to show

temselves. For this reason, the results in Table 5.1 are reassuring.

A scrutiny of Tables 5.3, 5.5 and 5.6 reveals something rather curious.

By fitting the data with a polynomial, one can estimate from Table 5.3 the

CC-thrashing points for various k. Using these estimates, one can find the

corresponding r and s values in Tables 5.5 and 5.6 by interpolation

(again fitting the data with a polynomial).

Table 5.8 shows the results of this exercise: at the cc-thrashing point

for a wide range of values of k, r is about 7 and s about 0.3. Why this

is so is not yet known. However, from the value of r, one sees that, to

achieve maximum throughput, one would have to accept the cost of 7 aborts per

successful completion. Looking at it in another way, to reach the CC-thrashing -

point, one would have to push the system very hard.

~~~~~." ." ." . . . . . . . ...." "-.-." .-.. . , :" . *. . . ..-"."- - . .",
°

. . . ... " "- . -" . -' -"- " *.", - -. ", , -. •"



-135- -

6. TRANSACTIONS WITH MIEMORYLESS BEHAVIOR

*-Suppose after acquiring each lock, a transaction terminates with

probability 6 (it does not 'remember' how many locks it already has). in

this case (the flow diagram is as in Figure 3.1), p~= for i~ki. From

(3.8), we have

f(q) A i. -1 since co Il ande
(1-q) 13

1+ (~e1 ~c. ( 1 -6)1 for j; l
j-1 )

- A gq/(, (1_0)q)2  
I~

(1l-q) l+q/(l-(-6)q)-1

= (1-q) (1+6q)(U- (1-6) q) -1(6.1)

*As for throughput,

V O1
t N. by (3.11)

j=l

T I j by (3.9)
ju1

I c.q)
N ju
T by (3.10)

j1 cjq~

TI /(-(-g

N q

N +6 (6.2)



-13- A a • •_

-. Fact 6.1-: If e, T and D are constants, then t increases monotonic4lly

with N for large N. 0

Proof. Recall from Fact 3.3 that limp I or lim q= 0. Hence for fixed

D and large N, qdO. From (6.1),

0 f(q) = (l-q) (l+Oq) (l-(1-8 )- 1

l-2(l-e)q -

so

q- +- U t

Substituting this into (6.2)

t As~ e[+(i+]
o .~

~T ¥ 2 (1-12)+e' .

-'..". [N+ -(-e) D .

TD[l - 1+(2-e) D

Since 2- e> 0, t increases monotonically with N (and approaches the limit - -

-D).T

" . This fact is counter-intuitive, for one expects that if transactions

behave reasonably, then the throughput should decrease when N is large

* because of too many restarts, even if the effect of resource contention is ,

ignored. We conclude, from the above result, that the memoryless assumption

does not adequately model transaction behavior.

." -7

. -.. -.



-137-

7. MULTIPLE TRANSACTION CLASSES

In this section, we consider a system consisting of more than one t ins-

." iaction class, where each class requires a different number of locks to

terminate. For ease of illustration, we consider just the case of two

classes, one requiring k locks, the other k locks (k <k). The model

is now as in Figure 7.1.

----------------------------------------------------------------------------------

Figure 7.1. Two Transaction Classes

N. N, N1 . Ng

tk t

J 0 i=k

0 else

-- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- -

If pk is known, we can solve for p by using the polynomial f(q).

Suppose, however, that we only know the ratio b=N IN, where

(k) (M. (k) (Z.)N -N +N ,and N ,N are the number of transactions requiring

<-2k and R locks, respectively. Then pk is an unknown dependent on b.

In this case, we may consider the system as a sum of two models, as in

Figure 7.2.

.70

-.
3

" :*. - P i = l i = 
.

-
-.



* -138-

Figure 7.2. Figure 7.1 as a sum of two Figure 4.1's.

N, *.* NV N1, a N, **.

t~tLQ

(k) (k) Wk ( M)(.)(.
a -a 0+a a a +..+

------------- ----------- -----------------------------------------------------------

Note that the probability of conflict is the same in both transaction

classes. By (3.7),

P ~jN.(k + ZjN.(

so

(-)DIjq N 0 + ~Iq by (3.9) and (4.1)

lj ljul J4 
*

N NWN 0 k N(k.) N 00 jq 0+z jq7

N jq N j=l

rk 2
I I jqj

b k + (1-b) k by (3.10)

L jw0 j-0

Hence q is a zero of g, where

Sjq3  jq'

* .. g(q) =(q)b jl + (1-b) L...~1 . (7.1) 'k k
q q]

6W j=0 --

A.....................



-139-

Fact 7.1: There is exactly one zero of g in [0,1).

Proof. Let us make k a variable in (4.2) and index f to be f .Then
k*

9 b (-b)f. where--from the proof of-Fact 3.2--f (0) < 0,

lrn f~ (q) -+- and f is continuous and mnonotonic increasing on [01

for a -kjt. Therefore g has the same properties, to wit: g(0) <0,

* lin 9(q)- 0 and g is continuous and mnonotonic increasing on [0,1), and
q-1l
so has exactly one zero in [0,1). (See Fig. 7.3). 0

---------------------------------------------------------------------------------------------

Figure 7.3. g- bf + (1bf
k l- kf

P-9P

As in the previous cases, this zero behaves reasonably.

Fact 7.2: Given b, p increases as A~ increases, and linj p 0,

lin P 1.



|- " - . " -b

-140- .

Proof. Recall from the proof of Fact 7.1 that g is continuous and mono-

tonic iticreasing on 10,1). The proof that p increases as X increases

is therefore the same as that in Fact 3.3.

Let q be the zero of f in [0,1), where a=k,j and f is

as in the preceding proof . Since g =bf + .(-b)f where f and f
k bf . k k.

*' - are continuous and monotonic, the zero q, in [0,I) of g must lie

" between qk and q.. Hence p lies between Pk and p,, where

p = l-q1 , =k,9. The limiting behavior of p and p£, is given by

Fact 7.1, i.e. lira pC =0 and lira p,=1 for ct=k,k, and it follows
X-O+  l*+ . ..

that p has the same limits. "

The variance performance measures are as follows:

(k) k -"
From (4.4), t(k) N (1-q)q N b ( 

( k )  N (1-b) (1-q)"
T k+l T k+1' T i l

1 -q 1 -q -q

9-.
(7.2) [....

(k) N (l-q) (l-k 9. N (-)(-
From (4.5), a = b a-q = (1-b) l-q (lT l~qk+ 1 Tlq+1

(7.3)

Fact 7.3: For small A, k and k,

(i) p = [bk + (l-b)]

b 1-b )N (k).)
(ii) t = k+ -- 4 where tt +t

(iii) a -L-+ (1-b) Z )N where a= a (k) + a M

Proof. By Fact 7.2, for small X,k and k, qjfl for lj<£ Thus

from (7.1),

a - . . - ..

. ... "..'I

'.'i .)'m" "
.
" " ". "". "" .* " "" " ". ". --' t a . 1 . " "A ...A .9 A . .... ' % )"" - dh. '. q £ ,'. .a a q ." " . .' " . - . .. .



-141-

r+ 1 ) 1"0• q (kl)k (q)-) 2
0 k+1 -

" ,:" - b + (1-b) j- 1 -'..v

and so

;[. ~p l bk + (1-b)) Z -
2

- Similarly, by (7.2),

t() Nb qk b 1 t(2 (1- 1--I -T k T kI T£ i r-

* and by

a(k) N Nb -(--p) b a M (1-b)
a T k T k+l T k+;

l+q+...-q

Hence the claim in Ci) and (ii).0

Once again, our intuition about the behavior of the system when ?.is

small is confirmed, for we can derive the approximations in Fact 7.3 with

intuitive arguments much as is done in Section 4. For example, few

conflicts are expected and most transactions should complete. The average

number of locks held by a length k transaction would then be k/2, and

that for length 2Z transaction k/2. The average number of locks in the

system would thus be4

N +k) N - k + (1-b) so that p [k + (1-b)

2 2 2Lb 2 21D 22

as n i) above.

%hen considering two transaction classes, the principal interest is in

h on their interaction affect the performance of each. In particular, we

consider noW the contribution of the shorter transaction to the throughput

* *-.-.*-"..

"~ ~n borits ate.epce n ottascinssol opee h rg

. . V....-'..-



-142- -

Wttk)

a ((k

a( k)b)

X)- incrase as). inceaes and

(k)(k

b+(-b +- (1-b) k

+1k

(k) b 3 ~ j .g + -b)-b)

k£ k+

-qqk41*

101) o a X increases (Fact 7.2), s - is an increasing function

of X~.

Now for small X., qP91 (Fact 7.2)

t(k) k+~e

b/b+(1-b)(£)/

b/+ (1-b) (k+'2
M+ 1)

. -. * -b

- . . . 0-9

5~~*'~.. . . . . .. . . . . . . . . . . . . . . . . . . . .

b.. . . . . . . . . . .. . . . . . . . . . .



-143-

For large ) q'wO, so t -- b/(b+(l-b)q )E-k l since It>k.

(ii) From (7.3),

Sa bb+ (1-b) £l k'
1-q l-q

it is again a straightforward, if tedious, exercise to show that a
a

increases when X~ increases (for k;02).

When Pv 0, we have q I and

a W b/ (b + (1-b) 1+g ...+g l+g+...+gk
a I,+q+...+qt l+q+...+ qk-l/

9.l kl

a f b/ (b + (1-b) b.lk

For large *qP"O# so a b(+(-b)=b

Since transactions requiring 9. locks continue to suffer restarts

after the (k+l)-th stage, we expect a /a) <'b; Fact 7.4 gives

b a(k)

b+(l-b) T9. kl a

Furthermore, the lower bound is close to b for a wide range of values of

k and k., so that the proportion of restarts is highly insensitive to the

number of locks required by each class. Similarly, because more locks are

required, transactions requiring X. locks contribute less to the throughput.

Fact 7.4.gives

b+(i-b) -~

I.+ 1

-NI



-144-

For high enough load )~insufficient numbers make it through the extra

t (k)

stages, and PW- 1.
Lessons learnt from Section 4 are also applicable here. For example,

given )~and b, k and 2.should not be greater than the lock limits

for bX and b(I-?X), respectively. Conversely, for given k and k, X

and b must be chosen so that bA and (l-b)X are less than the

saturation points of k and 2,respectively, or there will be no through-

put to speak of for one class or the other. If A is increased, whether

* the CC-thrashing point for a particular class is reached first depends on

b.

4~ F1



-145-

8. CONCLUSIONS
n ,

We draw two sets of conclusions, one concerning what the model tells

us of exclusive locking without waiting, and the other about the model

itself.

If we believe that this model has captured the essential features of

the locking policy studied, then it reveals the following results, assuming

-'- uniform access:

(RI) The effect of the number of transactions on prob(conflict) is

indistinguishable from that of granularity.

(R2) For small loads, the probability of conflict, throughput and

ratio of abort rate to throughput are linear in N.

" (R3) For throughput to be significant, transactions cannot request

more locks than the lock limit for a given load and, conversely, the load

should not exceed the saturation point for a given number of locks required.

We expect the concepts of lock limit and saturation point to endure even

if there is nonuniform access, when the model is extended to other locking

"" policies, and indeed for any reasonable model for locking.

.(R) Assuming a memoryless lock request behavior leads to increasing

throughput even for large N (if resource contention is disregarded), and

is unreasonable. (Hence some standard queueing models may be bad.)

(R5) For a system with two transaction classes, the one requiring

less locks contribute more to the throughput and, in fact, dominates under

high loads, whilst the ratio of aborts is essentially just the ratio of -- ,

transactions. ."

As to the desirability of the model itself, the model has the

-' following in its favor:

o.

. .". . .



-146-

(MI) It is simple, and makes no assumptions about probability

distributions, etc.

..,.. (N.) It cleanly separates the issues of resource contention and concur-

~ rency control, thus allowing one to study the effect of each on the system.

(M3) It is a 'high-level' model. The model allows us to ask questions

about a wide range of performance characteristics, and not just preliminary

measures such as the probability of conflict. In fact, the model accepts

4% as input the function it specifying prob(conflict) for different system

[ .4 states. Though it is assumed that there is uniform access in most of this

., paper, the assumption is not necessary for the use of the model--one can

perform a numerical analysis based on a 17 that ig empirically obtained

for the particular system under study. (Restricted forms of non-uniform

access can also be treated analytically ITSG].) Similarly, the model

accepts any T that may be appropriate for the system concerned.

(M) It is flexible. It is for convenience, for instance, that T

is assumed the same for different stages; if it is different, it can be

• handled in a way much as is done for p,. We have also seen how the model

. can handle transactions of indeterminate length, and multiple transaction

classes. [TSG] treats a system with queries (which share locks) and

updates (which require exclusive locks).

(M5) It has been validated for the case of all transactions

requiring the same number of locks.

(M6) It can be extended. Work is now in progress on the waiting

case. It is obvious that the flow diagram in Figure I is equally

l applicable to timestamp ordering algorithms, and can be extended to more

sophisticated concurrency control algorithms, such as those that abort

waiting transactions.

% %J' , " " . ," " ." -" " , '. " . .. % *. . . . . . % .. . " • ", " • " ". ".". ".*.. ". " . . ", " " " " .V



-147- -

This paper contains but the first of what this model and its

extensions have to offer.

Acknowledgments

We would like to thank Oded Shmueli for the use of his two-phase

* - locking simulation program, and Ken Sevcik for his extensive and useful-

comments on an earlier draft of the paper.

-A..



TTJr.TT77..77..7.. A

-148-

0

APPENDIX I: Graphs

0

MO

* ~. .J

N

.. ' -'

~ V.

..

-*1

*.

. . - . .

.~ ~....~

...........................................--



L -149- :." "

4

:.-o, ff? < ." ]

* U.

. ,qf .t 0.

,,..:- 
. - ..

4
,,.-., 

.. -.

'4 . '." - _° . '. °K.. . .. . -

. . .- - - . . . o . - . .- - - . . . , . * - " . j - - • • . - - . ,- • -'4'

..- . .-." . . . . . .. . . . - .- . . " . . . . . - . . .' . . . . .' , ..,,.4



0.6

0.2

0.1

0.0-T - r r l k

- - Graph 4,2

Nk

.20

.10
@1 As.oo 0

.0
.05 .09

* 7If 43 Is

Graph 4.3



-151-

CD 0

4-0



-152-.

kes
k63

OLD S

0.4

Graph S.Ia 4I

0.2

0 0.-305 0.7 09

kinG

CA

Graph 5.1b

OLs

0.2

01

0 0. .(3 CA5 0.7 0.9%

4i



-153- . -"---.

It

.15°

.°.o

-- JS

.1 Graph 5.1.-
S.',

.. - k-3 ,_

.03

kve
0 o. 0.3 0.5 0.7 0.9 -A

-curve Obtained by MAC5YPM
" value from simulation

Graph 5.1 (D-I unit, t(N)-I unit)

.. 2. W .

.''5

%'%2

* ." .b

- -- * S"-,--. .

: :: NA : : % . *' .. ; .v. ........... ..- .. :- "



o777 7 - ... ... . 1.. 77 -.07.

-154-

APPENDIX 2: Tables

Table 5.1

Probability of conflict p- l-q, where q is the zero in [0,1) of

f in (4.2).

Table 5.2
k

Tnnormalized throughput t = T k+1 (see (4.4)). Only the

factor (ggk is tabulated. g
1-q

Table 5.3
(Iqqk

Normalized throughput t' = (k+1)t; only the factor (k41)X (l-gl
q

is tabulated.

Without concurrency control, the response time of a transaction is

(k+1)T, and the throughput N/(k+1)T. Hence the drop in throughput

in Table 5.2 when k gets larger is partly due to just the time it

N takes for a transaction to accumulate its locks. Table 5.3 factors

this out, so as to make the effect of aborts on throughput easier

to discern.

Table 5.4
k

Abort rate a D A(l-g) (l-q (see (4.5)). Only the factor
k T k- Il4

1~ - q

kk

(1-) (1) * lu- kj

Nurof abort s rat et thrghputi(eo 2wihnsalote.ai

(4.4)and (.5))

Lt u-po a trnato copee wihu abrig. hn uK



Table 5.6
1 .0

Lt s - - (number of locks an average transaction holds).

Number of locks in the system Dp (see (3.7)), so a - p k
k N 10<

Table 5.7

In the simulation, T-Nh, where h is the average time it takes for
1l (l-g)qk

the scheduler to handle one request. Hence t = k+l and
1k (l-q) (1-) l-q

a- k+l The throughput and abort rate are given in the -O

l-q
simulation with h as the time unit. The predicted values in this

k
table are therefore given in the same time unit, i.e., t = and

'ak+ (1-q) (1-,k )-.a- = k+l
l-q

Table 5.8

The r and s values at the C-thrashing point for various values

of k.

-4--

" . % . , 
. - . -

-.o', .. . *.

)i:. . . . .. . . . . . . . . . . . . . . . .

[ " '.--. -.. -- ',, -',:,'.'.................................................................. >".... .. "\".---:'.'-'-:-- '.:-'-: : - -: -':-:

t.-- : . . - - ; * -. . . .".". " ' 'v '''.. .,. .,.:.,,-....-,,..,...,....".., ....



'a..

.. -1s6- ,

Table 5.1

probabilitw of coreflict P.

k=3
2 3 4 5 6 7 a 9

.00 0.0015 0.0030 0.0045 0.0060 0.0074 0.0009 0.0104 0.0119 0.0133

*.- .0 0.0140 0.0291 0,0431 0,0575 0.0706 0,0034 0,0958 0,1007 0,1205
-""'0.1327 0.2343 0.3141 0.3769 0.4202 0.47.06 0.5059 0.5364 0.5627

k=4
1 3 4 5 6 7 0 9

.00 0.0020 0.0040 0.0060 0.0079 0.0099 0.0119 0,0138 0,0157 0.0177

.0 0.0196 0.0385 040566 0,0741 0.0909 0.1071 0,1220 0.1364 0.1511
0.1646 0.2764 0.3561 0.4159 0.4629 0.5012 0.5334 0.5606 0.5840

-." ,.',k= 5  "'
k.5 1 2 3 4 5 6 7 a 9

.00 0.0025 0.0050 0,0074 0.0099 0.0123 0.0148 0,0171 0.0196 0.0219
* .'" ,0 0,0244 0.0476 0.06F9 0,0093 0,1007 0,1266 0,1438 0,1604 0,1756

0.1903 o.3041 0.3804 0,4366 0.4805 0.5160 0.5457 0.5710 0.5930

-- k=6 I

1 2 3 4 5 6 7 8 9

.00 0.0030 0.0060 0.0089 0.0119 0,0148 0,0176 0,0204 0.0232 0.0260
-0 0.0291 0.0557 0,0000 0.1031 0.1236 0,1430 0,1610 0.1790 0.194n

0.2101 0,3220 0.3950 0.4481 0.4895 0.5231 0.5514 0.5757 0.5969

k7
1 2 3 4 5 6 7 8 9

.-. .00 0.003") 0.0070 0.0103 0.0137 0.0170 0.0204 0.0236 0.0269 0,0301
"0 0.0329 0.0628 0.0901 0,1150 0.1372 0.1575 0.1763 0.1935 0.2101 ,

0.2240 0.3342 0.4041 0.4547 0,4944 0,5267 0,5542 0.5779 0.5986

kin8
1 2 3 4 5 6 7 a 9

.00 0.0040 0.0079 0,0110 0.0156 0.0193 0.0231 0.0260 0.0304 0.0338

.0 0.0375 0.0706 0,0991 0,1251 0.1402 0,1694 0,1803 0.2057 0.2212
0.2361 0.1421 0.4093 0.4583 0.4970 0.5290 0.5556 0.5709 0.5914

-. . . . . . . . . . . : . ..*

.::. -....

• • • .o



-Vs ....
-157-

Table 5.1 (contirsued)

k-9

1 2 3 4 5 6 7 0 9

.00 0.0045 0.0080 0.0131 0,0174 0.0216 0,0257 O. 028 0.0337 0.0376

.0 0.0412 0,0766 0.1071 0.1342 0,1575 041703 0,1974 0,2145 0.2302
0.2447 0.3473 0.4125 0.4603 0.4902 0.5296 0.5363 0.5793 0.5997

* k-10
1 2 3 4 5 6 7 a 9

.00 0.0050 0.0098 0.0146 0.0192 0.0238 0.0203 0.0374 0.0370 0.0412

.0 0.0453 0,0829 0.1143 0,1416 0,1653 0.1857 0,2045 0,2212 O,2366
0.2509 0.3511 0.4145 0,4615 0.4990 0.5301 0.5565 0.5797 0.5998

k=11
1 2 3 4 5 6 7 a 9

.00 0.0055 0.0100 0,0159 0,0210 0,0259 0.0307 0.0355 0.0400 0.0446

.0 0.0494 0,084 0,1205 0,1402 0,1715 0.1922 0,2101 0,2266 0,2418
0.2554 0,.3532 0,4159 0.4624 0.4995 0.5303 0.5567 0.5797 0.6000 -

kz12
1 2 3 4 5 6 7 B 9

.00 0.0060 0.0117 0.0173 0.0227 0.0200 0.0332 0.0302 0,0431 0.0479

:0 0.0521 0,0934 0.1259 0.1533 0,1763 0.1968 0.2151 0.2308 0,2459
0.2593 0.3540 0.4166 0.4627 0.4997 0,5305 0.5569 0,5790 0.6000

k=13 .-

145 6 7 c 9 form

.00 0.0064 0,0125 0.0136 0.0244 0.0301 0.0355 0.0400 0.0459 0.0510

.0 0.0557 0,0975 0.1312 0,1575 0,1010 0,2006 0,2100 0.2343 0,2487
, 0.2620 0,3561 0.4169 0.4629 0.5000 0.5305 0.3569 0.5793 0.6000

k-14
1 2 3 4 5 6 7 8 9

" .00 0.0069 0.0135 0,0199 0.0260 0.0320 0.0377 0.0432 0.0406 0.053C
.0 0.0593 0,1015 0.1349 0.1618 0.1843 0,203C 0.2212 0,2366 0,2509

0.2636 0.3565 0.4172 0.4632 0.5000 0.5307 0.5369 0.579n 0,6000

k=15
1 2 3 4 5 6 7 a 9

.00 0.0073 0.0144 0.0211 0.0276 0,0339 0.0390 0,0456 0.0511 0,0565

.0 0.0619 0,1047 0,1379 0,1646 041870 0.2063 0,2236 0.2390 0. 2516
0.2652 0.3573 0.4176 0.4632 0.5000 0.3307 0.5569 0,5793 0.6000

! -,-,. '-:-'-.- ..-- .-:'..,... -. -..- i. ..... -.. ".... -"..-. .'..... .... '.. .. . .

.. ',.;- ;, "-",,",",.",", .,",..- ".:;.: :'.-'-;:_,: .'--,-',.-,.....'-..'...' -'."-".-'..-.."'-.-...,.-...,"."-....."..,."..."."....,.. • '. --



-158- .

Table 5.2

u-s nrmaJized throughput t
(to goet the real valuest multiplw bw D/T)

k- 30
1 2 3 4 5 6 7 a 9

.00 0.0002 0,0005 0.0007 0.0010 0,0012 0.0015 0.0017 0.0020 0,0022
- .0 0.0024 0.0048 0,0070 0,0091 0.0112 0.0131 0,0150 0.0167 0.0184

*, 0.0199 0,0321 0.0390 0.0429 0.0440 0,0455 0,0454 0.0448 0.0439

k- 4
1 2 3 4 5 6 7 8 9

.00 0.0002 0.0004 0.0006 0.0000 0.0010 0.0012 0.0014 0.0015 0.0017
- .0 0.0019 0.0037 0,0053 0,0068 0,0082 0.0094' 0.0106 0.0117 0.0126

0.0135 0.0109 0.0207 0.0200 0.0202 0.0192 0.01111 0.0170 0.0159

.- k- 5
.0 1 2 3 4 5 6 7 8 9

o. 0.0002 0.0003 0.000Z 0,0007 0.0000 0,0010 0.0011 0.0013 0.0014
.0 0.0016 0.0029 0.0042 0,0052 0,0061 0,0069 0.0076 0,0082 0.0088
/ 0.0092 0.0112 0,0110 00102 0,0093 0.0003 0.0075 0.0067 o.no6o

k- 6
1 2 3 4 5 6 7 a 9

.00 0.0001 0.0003 0.0004 0,0006 0.0007 0.000n 0.0009 0.0011 0.0012

.0 0,0013 0.0024 0,0033 0.0040 0.0046 0,0051 0.0055 0.0059 0.0061
I 0.0063 0,0067 0.0060 0.0051 0.0044 0.0037 0.0032 0.0027 0.0023

km 7
1 2 3 4 5 6 7 a 9

.00 0.0001 0.0002 0.0004 0.0005 0,0006 0,0007 0.0000 0.0009 0.0010

.0 0.0011 0,0020 0,0026 0,0031 0.0035 0.0030 040040 0.0042 0.0043
_ 0.0043 0.0040 0.0033 0.0026 0.0021 0.0017 0.0014 0.0011 0.0009

1 2 3 4 5 6 7 0 9

900 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0069
.0 0.0009 040016 0,0021 0.0025 0.0027 0.0020 0.0029 0,0030 0.0030
, 0.0030 0.00275 0.0013 0.0014 0,0010 0.0000 0.0006 0.0005 0.0004

k= 9
1 2 3 4 5 6 7 a 9

.00 0.0001 0.0002 0,0003 0.0004 0,0005 0,0005 0.0006 0,0007 00008

.0 0,0008 040014 0,0017 0,0019 040021 0.0021 0.0021 040021 0,0021
" 0,0021 0.0015 0,0010 0,0007 0.0005 0.0004 0.0003 0.0002 0.0001

,. • .. . . . ...- 4... ..... . ......- ,-,..,..,. - . .. ....- ,- -. ... '.- .'- .... -.-.. • .. --- -. .- ' ---. -.
,'/ -" -.-" .""..'.• " - " " " "."i "- ";'" "' ": " " ;"" " ,"-'" .-" .-. -/ -. " " -. '-. '---. -- "...--" -. "-.-'



-159-

Tab le 5.2 (continued)

k 10
1 2 3 4 5 6 7 8 9

.00 0.0001 0.0002 0.0003 0,0003 0,0004 0.0005 0.0005 0.0006 0.0007

.0 0.0007 0.0011 0.0014 0.0015 0,0016 0,0016 0,0016 0.0016 0.0015 . -

. 0.0015 0.0009 0.0006 0.0004 0.0002 0.0002 0.0001 0.0001 0.0001

k-ll
1 2 3 4 5 6 7 8 9

.00 0.0001 0,0002 0.0002 0.0003 0.0004 0.0004 0.0005 0.0005 0.0006

.0 0.0006 0,0010 0,0011 0.0012 0.0012 0.0012 0,0012 0,0011 0,0011
0.0010 0.0006 0.0003 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000

k-12"-. ,

1 2 3 4 5 6 7 8 9

.00 0.0001 0.0001 0.0002 0,0003 0,0003 0.0004 0.0004 0.0005 0.0005

.0 0.0005 0,0008 0,0009 0.0009 0,0009 0.0009 0.0009 0,0008 0.0006 ..

0.0007 0.0004 0,0002 0,0001 0.0001 0.0000 0.0000 0,0000 0.0000 . -

k=13 ":",

1 2 3 4 5 6 7 8 9

.00 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0004

.0 0.0005 0.0007 040007 0,0007 0.0007 0,0007 040006 o.ooo 0.0006
0,0005 0,0002 .0.0001 0,0001 0,0000 0,0000 0.0000 0.0000 0.0000

k-14
1 2 3 4 5 6 7 a 9

.00 0.0001 0.0001 0.0002 0.0002 0.0003 090003 0,0003 0,0004 0.0004

.0 0.0004 0,0006 0.0006 0,0006 0,0006 0.0005 0,0005 0.0004 0.0004
0.0004 0.0001 0,0001 0,0000 0.0000 0.0000 0.0000 0.0000 0.0000

k=15
1 2 3 4 5 6 7 8 9

.00 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0104

.0 0.0004 0,0005 0.0005 0,0005 0.0004 0,0004 0,0004 0.0003 0,0003

. 0.0003 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Se

* *-.o.-.



-160-

Table 5.3

normalized throushput t'=(kl)l.t.
(to .et the real values, multiplw bw D/T)

k= 3 0
13 4 5 6 7 0 9

.00 0,0010 0.0020 0.0030 0,0040 .0.0049 0.0059 0.0069 0.0079 0.0088

.0 0,0093 0,0191 0,0280 0,0365 0.0446 0,0524 0,0598 0.0668 0.'0735
- 0.07911 0.1202 0.1562 0.1716 0,1792 0.1810 0,1817 0.1793 0.1758

-4
1 2 3 4 5 6 7 8 9

.00 0.0010 0.0020 0,0030 0.0039 0,0049 0,0059 0,00611 0.0077 0.0087

.0 0.0096 0.0185 040266 0,0341 0.0409 0,0472 0.0531 0.0504 0,0631
- 0.0676 0.0945 0.1033 0.1039 0.1000 0.0960 0.0905 0.0350 0.0797

1 2 3 4 5 6 7 a 9
,0 0.0010 0,0020 0,002?7 0,00o9 0.0050 0,0067 0.0076 0.0085

.0 0.0074 0,0176 0,0249 0.0313 0,0368 0.0416 0,0458 0,0494 0,0526

0.0553 0.0672 0.0663 0.0614 0.0556 0.0500 0,044 0.0401 0.0359

k= 6
1 2 3 4 5 6 7 8 9

.00 0,0010 0.0020 0,0029 0,0039 0,0040 0,0057 0.0066 0.0074 0.0083

.0 0.0071 0.03,67 0,0230 0, 0282 0,0325 0,0359 0.0388 0,0410 0.0428
0.0442 0.0469 0.0419 0.0360 0,.0306 0.0260 0.0221 0.018? 0.0162

k= 7
1 A 3 4 5 6 7 8 9

-00 0.0010 0.0020 0.0029 0.0038 0,0047 0,0056 0.0064 0.0073 0,0081
0 0.0089 0.0158 0,0211 0,0251 0,0282 00305 0,0322 040335 0,0342

km 9
o*30002 .263 0,0210 0,0160 0.013 0.0109 0.000a 0.0072

k-- -8
1 2 3 4 5 6 7 8 9

N" .00 090010 0.0019 0.0029 0.003 0.0046. O.OO5 0.0063 0.0070 0.0078
.0 0.0085 0.0147 0.0191 0.0221 0.0242 0.0255 0.0264 0,0268 0,0271
o 0,0270 0,0221 0.0165 0.0123 0.0092 0.0069 0,0053 0,0041 0.0032 __

@7' 4%

o34



-,',-.. 7-7..7

-161-

Table 5.3 (continued)

k- 9
1 2 3 4 5 6 7 a 90

.- . .00 0.0010 0.0019 0.0028 0,0037 0.0045 0.0053 0.0061 0.0068 0,0075
.0 0.0082 0,0136 0,0171 0.0192 0.0205 0.0213 0,0215 0,0215 0,0212-
- 0.0208 0,0152 0,0104 0.0072 0.0050 0.0036 0.0026 0.0019 0.0014

k=10
1 2 3 4 5 6 7 8 9

.00 0.0010 0.0019 0.0028 0,0036 0.0044 0.0052 0.0057 0.0066 0.0072
.0 .0780.0125 0.0152 0.0166 0.0173 0,17 0.74 .0171 0.0166

- 0.0160 0.0103 0.0065 0.0042 0.0027 0.0018 0.0013 0.0009 0.0006

kil
1 2 3 4 5 6 7 a 9

.00 0.0010 0.0019 0,0027 0,0036 0.0043 0.0050 0.0057 0.0063 0.0069

. .0 0.0075 0.0114 0.0134 0,0143 0.0145 0,0143 0,0140 0.0135 0,0129
. 0.0123 0.0071 0.0040 0.0024 0.0015 0.0009 0.0006 0.0004 0.0003

k=12
1 2 3 4 5 6 7 a8

.00 0.0010 0.0019 0,0027 0.0035 0.0042 0.0049 0.0055 0.0061 0.0066

.0 0.0071 0,0104 0,0110 0,0122 0,0122 0,0117 0,0112 0,0107 0.0100

. 0,0094 0,0040 0.0025 0,0014 0.0008 0.0005 0.0003 0.0002 0.0001

k-13
1 2 3 4 5 6 7 8 9

.00 0.0010 0,0010 0.0026 0.0034 0,0041 0.0047 0*.005. 0,0058 0.0063

.C 0.0067 0,0094 0,0103 0,0104 0,0101 0,0096 0,0089 0.0004 0.0070
, 0,0072 0.0033 0,0016 0,0008 0,0004 0.0002 0.0001 0.0001 0.0001

km 14
1 2 3 4 5 A 7 8 9

.00 0.0010 0.0018 0,0026 0,0033 0.0039 0,0045 0.0050 0.0055 0.0059

.0 0.0063 0.0085 ooo90 0,008P 0,0004 0.0070 0,0072 00066 0,0060
- 0.0055 0.,022 0.0010 0,0005 0.0002 0.0001 0.0001 0.0000 o.OOQ.0

1 -2 3 4 5 6 7 89

.00 0.0009 0.0010 0.0025 0.0032 0.0030 0.0043 0.0040 0.0052 0.0056

.0 0.009 0,0077 0,0079 0.0075 0.0070 0.0063 0,0057 0,0052 0,0047
0.0042 0,0015 0.0006 0.0003 0.0001 0.0001 0.0000 0.0000 0.0000

_...,-.......... +.. -. _ .. ... . .... . . -... ..- ......... :.. .. ........ +.. . ......... ,..
.................... +s+ . +. . . . .. . ." .+ ''"" -' "''.. I ... - - i |



-162-

Table 5,4 1

abort. rate a
(to det, the real values, multir-1w hw ti/T)

k- 3
1 2 3 4 5 6 7 8 9

.00 0.0000 0.0000 0.0000 0.0000 0,0000 0.0000 0.0001 0.0001 0.0001

.0 0.0001 0,0004 0,0010 0,0018 0,0027 0.0039 0,0053 0,0069 0,0086
* 0,0106 0,0393 0.0820 0.1346 0.1949 0.2610 0.3312 0,4051 0.4017

V.-'-'.b

k= 4
1 2 3 4 5 6 7 8 9

.00 0.0000 0.0000 0,0000 0.0000 0,0000 0.0001 0.0001 0.0001 0.0001

.0 0.0002 0.0006 0,0014 0,0025 0,0038 0.0054 0,0072 0.0093 0.011"
•. 0.0142 0,0501 0.0995 0,1577 0.2221 0.2911 0.3637 0.4390 0.5163

k= 5
1 2 3 4 5 L.7 8 9

,O) 0,0000 0,0000 0,0000 0,0000 0,0001 0.0001 0.0001 0.0001 0.0002
.0 0.0002 0.0009 0,0018 0,0031 OO048 0,0067 0,0090 0,0115 0,0143

0.0173 0,0574 0.1099 0.1702 0,2353U 0.3053 0.3779 0,4530 0.5301

k= 6 i i

1 2 3 4 5 6 7 8 9

.00 0.0000 0,0000 0.0000 0.0000 010001 0.0001 0.0001 0.0002 0.0002

.0 0.0003 0,0010 040021 0.0037 0,0056 0,0079 0,0104 0,0133 0.0163
0.0197 0,0623 0.1161 0,1769 0.2426 0.3119 0.3842 0.4590 0.5359

,. k- 7 :'...
1 2 3 4 5 6 7 a 9

.00 0.0000 0,0000 0.0000 0,0000 0.0001 0.0001 0.0001 0.0002 0.0002

.0 0.0003 0,0011 0,0025 0.0042 0,0064 0,0009 0,0116 0,0147 0,0180
0.0215 0,0655 0.1197 0.1807 0,2462 0.3152 0.3872 0.4617 0.5382

k- B

1 2 3 4 5. 6 7 a 9

.00 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003
. • .0 0.0003 0,0013 0.0020 O,0047 0,0070 0,0097 0,0126 0,0150 0,012-

* . 0.0229 0.-0676 0.1220 0.1027 0.2480 0.3170 0,3886 0.4627 0.5392

:--

:.-: . .. _. .. . .. . .. , .. . -, . . * . . . . K . .. ..... -..K .



.~~~ ." .. .

-163-

Tahl. 5.4 (cortinu.d)

-.,,,- - - - - - - - -

ka 9

1 2 3 4 5 6 7 0 9

.00 0.0000 0.0000 0.0000 0,0001 0.0001 0.0001 0.0002 0.0002 0.0003

.0 0.0004 0.0014 0,0030 0.0051 0.0076 0,0103 0.0134 0,0167 0,0202

• 0,0240 0,0609 0.1233 0,133 0.2409 0.3176 0.3893 0.4633 0.5396

k=10
1 2 3 4 6 7 a 9

.00 0.0000 0.0000 0.0000 0.0001 0,0001 0.0002 0.0002 0.0003 0.0003

.0 0.0004 040016 0,0033 0.0055 0,0080 0.0108 0,0140 0.0174 0,0209
* 0,0247 0.06V9 0,1241 0.1344 0.2494 0.3100 0.3895 0,4637 0.5398

.k-11

1 2 3 4 56 7 8 9

.00 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004

.0 0.0005 0,0017 0,0035 0.0058 0,0084 0,0113 0,0145 0,0179 0.0215

0.0253 0,070 4 0.1246 0.1849 0.2497 0.3101 0.3897 0.4637 0.5400

k= 12

1 2. 3 4 5 6 7 a 9

.00 0,0000 0.000 0.0000 0.0001 0.0001 0.0002 0,0003 0.0003 0.0004 .-

.0 0.0005 0,0010 040037 0,0060 0,0006 0,0116 0,0149 0,0103 0.0219

"- 0.0257 0,0700 0.1247 0.1850 0.2498 0.3183 0.3873 0.4639 0.5400

. .13

1 2 3 4 5 6 7 8 9

.00 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0003 0.0004

.0 0.0005 0,0019 0.0038 0,0062 0,0009 0,0119 0,0152 0.0106 0,022?
" 0.0261 0,0711 0.1250 0.1052 0.2500 0.3183 0.3890 0.4637 0.5400

k=14

123 4 5 6 7 8 9

.00 0,0000 0.0000 0.0001 0.0001 0,0002 0.0002 0,0003 0.0004 0.0005

.0 0.0006 0.0020 0.0040 0,0064 0.0091 0.0121 0,0154 0,0188 0,0225

- 0.0263 0.0712 0.1251 0.1053 0.2500 0.3184 0.3899 0.4639 0.5400

k-15

1 2 3 4 5 6 7 a 9

.00 0.0000 0.0000 0.0001 0.0001 0,0002 0.0002 0.0003 0.0004 0.0005

.0 0.0006 0.0020 0.0041 0,0065 0.0093 0,0123 0.0156 0,0190 0.0227

. 0.0265 0.0714 0.1253 0.1053 0.2500 0.3184 0.3899 0.4639 0.5400

. . . ." - . .. . " . , . -, . ,



-164- Lei-

Table 5.5

th. uitir, r of abort rat. to i hrou. hr-ut.•
al-"i the rnum ber of abort% Per transaction

k= 3 ":0
1 2 3 4 5 6 7 8 9

.00 0.0045 0,0090 0.0136 0.0101 0.0227 0.0272 0.0318 0.0364 0.0410

.0 0.0457 0.0927 0.1412 0.1944 0.2458 0.,986 0.3529 0.4125 0,4699

. 0.5328 1.2276 2.0974 3.1345 4.3502 5.7406 7.2915 9.0358 10.961

3 4 5 6 7 a 9

.00 0.0080 0.0161 0.0242 0.0324 0,0406 0.0409 0.0572 0.0656 0.0740

.0 0.0824 0.1699 0,2625 0.3605 0.4641 0.5735 0,680 0,7902 0,9257

. 1.0529 2-6478 4.816S 7.5904 11,02 ^  15.160 20.070 25.834 32.399

.. 5
1 2 3 4 5 6 7 8 9

.00 0.0126 0 ,0'53 0,03n,1 0.0Z10 0,0641 0,0773 0.0901 0.1041 0.1171

.0 0.1314 0.2763 0,4290 0. 5950) 0.7781 0.9680 1.1738 1,3964 1,6261 .,* .
* 1.8730 5.1275 9.9526 16.619 25.433 36.640 50.653 67.819 88..541 -

k= 6
1 2 3 4 5 6 7 8 9

.00 0.0181 0.0365 0.05521 0.0742 0.0934 0,1123 0.1315 0. 1516 0.1713

.0 0,1941 0.4105 0,6491, 0.9215 1,2066 1,5390 1.0830 2.2650 2,6705

m 3,1172 9.2980 19,400 34.395 55.520 84.033 121.64 170,45 232.21

' k=7
1 2 3 4 5 6 7 8 9

.00 0.0240 0. 050 0 0,0751 0.1015 0.1276 0,1.550 0.1822 0.2100 0.2383

.0 0.2637 0.5745 0,9363 1.3526 1.8092 243201 2.8863 3,5077 4,2124
* 4.9447 16.246 36.457 60.790 117.46 1S7.06 284.63 417.75 594.13

1 2 3 4 5 a 7 8 9

.00 0.0325 0A650 0.073 0.1336 O.1689 0.2052 0.2424 0.2796 0.3148

.0 0.3581 0.7968 1,3045 1.9132 2,6087 3.4158 4,Z074 5,3126 6,3979
• 7.6202 27,4Y 3 66.492 133.85 242.96 411.66 655.84 1011.2 1505.4 _

i--l

o - •- -- . . . . •. -..



-165-

Tahblp 5.5 (corntinued)

k= 9
2 3 4 5 6 7 a 9

,00 0.0412 0.0830 0.1263 0.1711 0,2174 0.2643 0.3128 0.3617 0.4123
• 0 0.4607 1.0495 1,7731 2,6580 3,67n0 4.8562 6,2387 7.7792 9,5313

-* 11.502 45.486 118.84 25..56 495.09 886.29 1500.7 2421.4 3786.3

k-10
1 3 4 5 6 7 8 9

.00 0.0511 0.1035 0.1583 0.2142 0,2726 0.3322 0.4633 0.4576 0.5235

.0 0.5905 1.3761 2.3646 3,6053 5.0893 6.7980 8,n481 11.180 13,883
o 16.981 74,513 210.23 4n6.66 1002.7 1903.2 3398.8 580-.9 9497.6

k=l.
1 2. 3 4 5 6 7 8 9

.00 0,0622 0.1267 0,1934 0.2623 0.3348 0.40?6 0.4S81 0.5674 0.6521

.0 0.7465 1.7687 3,1055 4,8391 6.9210 944695 12.38? 15.888 20,022
-"24.635 119.50 369.28 920.31 2024.5 4072.1 7703.2 13813 23840

k=12

1 2 3 4 5 6 7 8 1?

.00 0.0744 0.1512 0.232? 0,3168 0.4060 0,4989 0.5955 0.6959 0.8020

.0 0.9012 2,2427 4,0247 6.362J 9,2476 12.068 17.202 22,298 28,547
5.6442 191.30 641.,7 1724.6 4070.4 0719.7 17472 33030 59603

k=13
1 2 3 4 5 6 7 8 9

-00 0,0365 0.1783 3.2772 0,37n5 0.4372 0.5997 0.7179 0.8418 0.9739
.0 1.1069 2,7933 5,2227 C,2067 12.406 17,300 23.758 31,155 40,144

50,905 314.65 1107.2 3232.9 0191,0 10574 39436 78613 149010

k=14
1 2 3 4 5 6 7 a 9 -.

400 0.1011 0.2099 0,3249 0.4461 0,5776 0.7131 0.8569 1.0092 1.1701
.0 1.3522 3.4764 6.6104 10.829 16,332 23,313 32.106 42.032 tP6. 113

71,543 477.97 1918,7 606.0 163S3 39825 89009 17100 372528

* . k-I5

2 3 4 r. 6 7 8 9

.00 0.1169 0,2429 0.3779 0.5221 0.6778 0.8403 1.0145 1.1978 1.3932

.0 1.6083 4,2577 0.2655 13,039 21,314 31.030 43.538 59,107 77,857

100.02 757.82 3322.1 11301 32767 84868 200895 445300 931321

-0

- . -- y- ..

-**..o4

.. . . . . . * .



4 •..-166- "

Table 5.6

s (nuxiber of locks an ,vverasp. trarsar t.ion holds)/k

k= 3
1 2 3 4 567 89

.00 0.4993 0.4985 0.4978 0.4970 0.4963 0.4955 0.4948 0.4941 0.4933

.0 0.4926 0.4854 0.4785 0,4791 0.4709 0.4634 0,4564 0.4531 0,446 3
0.4423 0.3905 0,3490 0.3141 0.2355 0.2615 0.2409 0.2235 0.2084

1 2 3 4 6 7 a 9

.00 0.4990 0.4900 0.4970 0.4960 0.4950 0.4941 0.4931 0.4921. 0.4912

.0 0.4902 0,4808 0.4717 0,4630 0.4545 0,4464 0.4358 0.4264 0.4197

* 0.4114 0.3455 0.2967 0.2599 0.2315 0.2009 0.1905 0.1752 0.1622

12 3 4 5 6 7 89

.00 0.4900 0,4,75 0.4963 0,4950 0.4938 0.4926 0,4836 0.4902 0.4869

.0 0.4878 0.4762 0.4593 0,4463 0.4349 0,4221 0,4110 0,4009 0.390."
0.3006 0.3041 0.2536 0.2183 0,1922 0.1720 0,1559 0.1427 0.1318

1 2 3 4 5 6 7 8 9

•00 0.4905 0.4970 0.4955 0.4741 0,4926 0,4SC5 0.451 0.4843 0.4816
.0 0.4854 0.4643 0.4446 0.4297 0.4119 0.3995 0.3852 0.3729 0,3608

0.3502 0,2604 0.2195 O.1067 0,1632 0.1453 0.1313 0.1199 0.1105

k=7
k=~ 1 2 3 4 5 6 7 a 9

.00 0.4903 0.4965 0,4701 0,4896 0.4059 0.4051 0,482 2 0,479%S 0.4773

.0 0,4697 0,4405 0,4290 0.4109 0,3920 0.3751 0,3597 0.3456 0,3335
• 0.3212 0,2387 0,1924 0,1624 0.1413 0.1254 0,1131 0.1032 0.0950

k= 8
1 2 3 4 5 6 7 8 9

.00 0.49t30 0.4960 0.4900 0.4361 0.4030 0.4803 0.4779 0.4742 0.4697

.0 0.4692 0,4414 044129 0.3910 0.3705 0,3530 0.3363 0.3214 0,3072
• 0.2951 0.1138 0.1706 0,1432 0.1242 0,1102 0.0992 0.0905 0.0832

-3

%... . ... .. ,. ..... . .... . . ...



-167-

Table 5,6 (contirued)

k=9
- 2 3 4 5 6 7 a 9

.00 0.4970 0.4901 O 43/1 0,4031 0.4005 0,4763 0,472,3 0.4634 0.4646 '
%.0 0.4581 0.425n 0.3948 0.3728 0,3501 043302 0.3134 0,2979 0.2S42

". o 0,2719 0.1929 0.1523 0.1277 0,1107 0,0701 0.0383 0,0805 0,0740

k=10
1 2 3 4 5 6 7 8 9

.00 0.4975 0.4901 0.4061 0.4806 0,4764 0.4713 0.5336 0,4622 0.4581

.0 0.4535 0.4145 0.3n09 0,3541 0.3306 0,3094 0,2921 0.2765 0.2629

. 0.2509 0,1755 0.13n2 0,1154 0.099n 0.0333 0.0795 0.0725 0.0666

k=11
1 2 3 4 5 6 7 8 9

.00 0,4973 0.4901 0,4331 0.4762 0.4711 0.4655 0.4610 0.454? 0.4507

.0 0.4494 0.4019 0,3651 0.3368 0.3118 0,2913 0,2729 0.2575 0.2443
% 0.2322 0.1605 0.1260 0.1051 0,0708 0.0303 0.0723 0.0659 0.0606

1 2 3 4 5 6 7 8 9

.00 0.4970 0.4059 0,4004 0.4724 0.4666 0.4606 0,4546 0,4486 0.4434

.0 0.4344 0.3891 0.3497 0,3193 0.2938 0.2733 0.2560 0.2404 0.2276
- 0.2160 0.14711 0.1157 0,0964 0.0033 0.0737 0.0663 0.0604 0.0556

k=13
1 2 3 4 5 6 7 8 9

.00 0.4092 0,4023 0.4701 0,4690 0.4626 0.4550 0.4480 0.4413 0.4356
" .0 0.4286 0.3749 0,3364 0,3030 0,2705 042572 0.2404 0.2253 0,2126 .

- 0,2015 0,1370 0,1069 0.0890 0.0767 0.0600 0.0612 0.0550 0,0513

k=14
123 4 5 6 7 8 9

.00 0,4095 0.4027 0.4737 0.4644 0.4577 0.4491 0.4413 0.4341 0.4273

.0 0.4233 0.3626 0,3213 0,2n09 0.2633 0,2426 0.2257 0.2113 0,1972
0.183 0.1273 0,0973 0.0027 0,0714 0.0632 0.0560 0.0310 0.0476

• " k=15 """

1 2 3 4 5 6 7 8 9 0

,00 0.4097 0.4777 0.4699 0.4603 0.4521 0.4427 0.4345 0.4 " 62 0.4186

.0 0,4120 0.3491 0.3065 0.2743 0.2493 0,2293 0,2130 0,1991 0.1.71

, 0.1768 0,1191 0.0720 0.0772 0,0667 0.0570 0.0530 0.0483 0.0444

*,,. '-.-

.-. .... - . . - - 9 1



- . . °]

-168-

Table 5.7

Comparison of values of performance measures 0
as predicted by the model with simulation results (D= 100).

Probability of conflict p

km 3

0.1 0.3 0.5 0.7 0.9

predicted value 0.133 0.314 0.428 0.506 0.563

simulation result 0.133 0.320 0.425 0.501 0.569

k =4

, 0.1 0.3 0.5 0.7 0.9

predicted value 0.165 0.356 0.453 0.533 0.584
Simulation result 0.162 0.356 0.459 0.527 0.586

k 5

A 0.1 0.3 0.5 0.7 0.9

predicted value 0.190 0.380 0.481 0.546 0.593
simulation result 0.191 0.381 0.472 0.546 0.585"

k =6

0.1 0.3 0.5 0.7 0.9

predicted value 0.210 0.395 0.490 0.551 0.597
simulation result 0.213 0.397 0.486 0.551 0.588

Abort rate a -.0

k 3

0.1 0.3 0.5 0.7 0.9

predicted value 0.106 0.273 0.390 0.473 0.535
simulation result 0.102 0.271 0.384 0.469 0.536

k 4

0.1 0.3 0.5 0.7 0.9

predicted~ value 0.142 0.332 0.444 0.520 0.574
simulation result 0.130 0.328 0.446 0.515 0.575



-169- -

Table 5.7 (continued)

k 5

Oo0. 0.3 0.5 0.7 0.9

*predicted value 0.173 0.366 0.472 0.540 0.589

simulation result 0.161 0.361 0.469 0.536 0.580

k-60

10.1 0.3 0.5 0 .7 0.9

V.predicted value 0.197 0.387 0.485 0.549 0.595
simulation result 0.186 0.388 0.483 0.546 0.597

Throughput t

k 3

10.1 0.3 0.5 0.7 0.9

predicted value 0.199 0.130 0.090 0.065 0.049
*simulation result 0.201 0.129 0.093 0.064 0.047

k=4

10.1 0.3 0.5 0.7 0.9

predicted value 0.135 0.069 0.040 0.026 0.018

simulation result 0.141 0.071 0.040 0.027 0.018

k 5

A0.1 0.3 0.5 0.7 0.9

predicted value 0.092 0.037 0.019 0.011 0.007

simulation result 0.097 0.038 0.018 0.011 0.0C7

k=6

10.1 0.3 0.5 0.7 0.9

predicted value 0.063 0.020 0.009 0.005 0.003
simulation result 0.067 0.020 0.010 0.004 0.003



.1 -170-

Table 5. 8

Values of r and s at CC-thrashing points0

k 3 4 5 6 7 8 9

CC-thrashing point 0.645 0.358 0.249 0.175 0.120 0.095 0.074
r 6.4 6.4 7.3 7.5 7.2 7.0 6.9
s 0.25 0.27 0.28 0.29 0.29 0.30 0.31

k 10 11 12 13 14 15

CC-thrashing point 0.060 0.049 0.045 0.037 0.031 0.026
r 6.9 6.6 7.8 7.4 7.0 6.1

s 0.31 0.32 0.31 0.31 0.32 0.32

am-o



-171- .5

REFERENCES

[BG] P.A. Bernstein and N. Goodman, "Concurrency Control in Distributed
Database Systems," ACM Corputing Surv.ey8, Vol. 13, No. 2, June 1981.

[DKLPS] P.J. Denning, K.C. Kahn, J. Leroudier, D. Potier, and R. Suri,
"Optimal Multiprogramming," Aota Informatica 7, 197-216 (1976). '

[GI H. Garcia-Molina, "Performance of Update Algorithms for Replicated
Data in a Distributed Database," Ph.D. Thesis, Computer Science
Dept., Stanford University, June 1975.

[K] L. Kleinrock, Queueing Systems, Vol. I. (Wiley, New York, 1976).

[LI V. Li, "Performance Models of Distributed Database Systems,"
Report LIDS-TH-1066, MIT Lab. for Information and Decision Systems,
Cambridge, Feb. 1981.

[LN1] W.K. Lin and J. Nolte, "Performance of Two Phase Locking," 6th
Berkeley Workshop on Distributed Data Management and Computer
Networks, Feb. 1982.

[LN2] W.K. Lin and J. Nolte, "Read Only Transactions and Two Phase Locking,"
*[ 2nd Symposium on Reliability in Distributed Software and Database

Systems, July 1982.

[LZ] E.D. Lazowska and J. Zahorjan, "Multiple Class Memory Constrained
Queueing Networks," Proc. Performance 1983.

[MK] R. Munz and G. Krenz, "Concurrency Control in Database Systems--A
Simulation STudy," Proc. ACM SIGMOD International Conference on
Management of Data, Toronto, Canada, Aug. 1977.

[PLI D. Potier and P.L. Leblanc, "Analysis of Locking Policies in Data-
base Management Systems," CACM 23, 10 (1980)..'-

[RI D. Ries, "The Effect of Concurrency Control on Database Management
System Performance," Ph.D. Thesis, Computer Science Dept., University
of California, Berkeley, April 1979.

[SS] A. Shum and P. Spirakis, "Performance Analysis of Concurrency Control
Methods in Database Systems," Perfozmnce '81, F.J. Kylstra (editor),
North-Holland Publishing Company, 1981.

[TSG] Y.C. Tay, R. Suri and N. Goodman, "Performance of Queries and
Updates," manuscript in preparation.

* - 4 -. .- 4.

.- . . • *

.2*~ .. . ......... .... .. .., .... ... .. .- '* *- *. , N. , N



-172-

SECTION VI

RECOVERY ALGORITHM4S FOR

DATABASE SYSTEMS*

Philip A. Bernstein

Nathan Goodman

Vassos Hadzilacos

*To appear in the Proceedings of IFIP '83, Paris, September 1983

SL'



-173-

1. Introduction

A database system (DBS) processes read and write commands Issued by

users' transactions to access the database. If a transaction fails in
midstream, or if the system fails, the database may be left in an

incorrect state. For example, if a money transfer transaction fails

after posting its debit but before posting its corresponding credit,

then the accounts are left unbalanced. The recovery algorithm of a DBS
avoids these incorrect states by ensuring that the database only

includes updates that are produoed by transactions that execute to orn-

pletion. This paper is a survey of recovery algorithms for centralized

and distributed DS'.s.

Computer systems can fail in many ways, only some of which are han-

died by DBS recovery algorithms, We limit our attention to SIan

-ailars in which a transaction, the system, or, in the case of a din-

tributed DBS, one site of the system simply stops running. We do not

consider taitorou fZ±jara in which components continue to run but

perform incorrect actions (see [Do, P3L]). We further limit attention

to Jilt failures in which the contents of main memory are lost, but the

contents of secondary memory (disk) remain Intact. We do not consider

methods for recovering from disk failures, although methods similar to

those in this paper apply (see OGr# OILL, R2, Lit, Lo, Tel]).

We describe a model of centralized DBS recovery in Section 2. We

present four cannonical types of centralized DBS recovery algorithms in

Sections 3 through 6. We describe recovery algorithms for distributed

DBES's in Section 7.

2. A Model Of Centralized Database System Recovery

We model a cent -rliz da Aat& m .yjstm as a scheduler, a recovery

. -. . . . . ," - - - - . ...

"" "" " " " "'- '-" " " " '," "', ; ": "- "- " ,'--" '""" " "" " " " " " " " '" -"" " .' -': -' " -., , i - 1



*.q -174- .

system, and storage.

"ead/WrIte/Cmt/Abut
operauas

Readdrte/C.s1t/Abortwtart

SYSTOt

* IeaG/rt. a paW
I' I

I I I/ S •Ip .'..

a I

The 5torage omponent consist of hiuffer zZaz and stable '2"

a rg. Both are divided into jhzsainl agaea of equal and fixed size. .:
Duffer storage models ain memry. Buffer strage is relatively fast,

bat of limited capacity, and it doesn't survive system crashes. Stable "

* torage models disk memory and it is relatively slow, of (almost) unlim- -:

lie

ited capacity, and it does survive crashes. ~

The . iaa consist of a set of 3n n~ Dagma. Ve assie that--

one pbysioal copy (usuallyr the most up-to-date copy) of each logical -- "
page T stored in a portion of stble storae called the stan.' A_

baf. Other portions of stable storage may be usd by the recovery fya-

* ma nonvolatile scratch .Dlaft in ways that will be described later. "::..

A limitedn a i a program that can read from or write into the 0e Stabl

database. A transacton can Itn fort types of omnd: lead, lrote,

Comeit, and Abort. ha caUse a page to be road from the database.

one causes a new copy of a logical pag to be written ito the data-

base. tell the system that the transaction has terinated and cl tlL

that all of it updated pages should be used byt refleoted in the

database. JaUk. tells the system that the transaction has terminated .-

that a of I

dtbs --.-



-175-

abnormally and that the pages it wrote into should be returned to their

previous state. (Commit and Abort may be issued by a process control-

ling the transaction, rather than by the transaction itself.) A transac-

tion can have only one Commit or Abort procedsed.

A transaction Is AQt±a If it has begun executing but ha not yet

had its Commit or Abort processed.

Notation: Each oomand in subscripted by the transaction that

issued it. For example, Readi(Pj) is a Read issued by transaction Tj on

page j.

The scheduler controls the order in which Reads, Writes, Commits,

and Aborts are passed to the recovery system. Althougha the scheduler
allows commands from different transactions to be interleaved, it

guarantees that the resulting execution is neraliz J b.e. An execution

is serializable if the effect is exactly the same as if the transactions

had been executed serially, one after the next, with no concurrency at

all. Many scheduling algorithms for attaining serializability are known

[BG1, 2]; versions of all of them are compatible with the recovery

algorithms described in this paper.

The scheduler also guarantees that the execution is r.eco.rable.

An execution is recoverable if, for each transaction Ti, Ti is not com-

mitted until, for each page read by Ti, the transaction that last wrote

that page is committed.

Recoverability is needed to avoid errors such as the following. ..

Suppose T1  reads a page Pk last written by Tj (which is still active),

Ti writes another page Pl, and commits. Now, suppose Tj fails and is

aborted. Aborting Tj causes its write on Pk to be undone, thereby

rendering Tto input invalid. But, since T1 cannot be aborted after S

having been committed, Tie updates to P1 must remain in the database

even though its input Pk is invalid.

For definitiona, we assume that the scheduler uses .g-leui .oo- -

Dim .Qk1" (2ZLI) [EGLT]. Before outputting Read(pj) (reasp.

Writei(pj)), the scheduler sets a read look (reap. write look) on page

Pj for transaction Ti. Two transactions cannot concurrently own goi-

.. -



-176-

fl"n ign looks on the same page, where read looks conflict with write

- locks and write looks conflict with read and write looks. If the

acheduler receives an operation for which it can't set the corresponding

look, it delays the operation until the lock'can be set.

. When the scheduler receives a Commiti or an Aborti, It forwards the

operation directly to the recovery system. When the recovery system

acknowledges that the operation has been processed, the scheduler then ,4

releases all the looks held by Ti.

Two-phase looking ensures serializability (see lBG2, EGLT] for

proofs). The version of 2PL presented above also ensures recoverability

by requiring that a transaction hold its write locks until its Commit or

Abort is processed.

The recovery system processes the Read, Write, Commit, and Abort

commands it receives from the scheduler. It also handles system

failures.

A aIaytem fa.ujw can interrupt the DBS at any moment. It causes

all processing to stop and the contents of buffer storage to be lost.

After the system recovers, transactions that were active at the time of

the failure cannot continue executing because the contents of main

memory are now useless. Thus, after the failure and before processing

any other commands, the recovery system processes the rsat command, -

*-. -' whose effect is to abort all active transactions.

To handle failures properly, it is essential that the Commit oom-

mand be implemented in a single instruction, normally a page write. If

it were to require more than one Instruction, a system failure could

interrupt a partially completed Commit, making it ambiguous whether the

transaction should be aborted during restart. Said differently, each

transaction must always be in one of three states: active, committed, or

aborted, and each state change must be implemented by an atomic instruc-

tion execution.

soil StrJLctm±Dg Scatch ARMI

There are several types of information that a recovery algorithm
stos in stable scratch space. It may store the identifiers of



r .. .. . . . . . . . ..

*-0 -177- .

transactions that have committed, called the omit±x list. In this case,

the single instruction that implements Comiti is usually a write that

adds Ti to the commit list. The recovery algorithm may also store a 0

list of identifiers of transactions that ake active, called the active.

"--k, and those that have aborted, called the abort lst.

Recovery algorithms often store copies of pages that were recently

written on an au=±t t±.rl (sometimes called a jurnal or For each

--. write processed by the recovery algorithm, the audit trail may contain

the identifier of the transaction that performed the write, a copy of

the newly written page (called an after-i0=), and a copy of the physi-

cal page in the stable database that was overwritten by the write

(called a before-.Agn). Different algorithms vary considerably in the

information they keep on the audit trail and in how they structure that

Information.

'2..- Md .fd

Recovery algorithms also differ in the time at which they write

pages into the stable database. They may perform such writes before,

. concurrently with, or after the atomic instruction that commits the

transaction that last wrote those pages.

Suppose that a page tten by an active transaction is written

into the stable database before the transaction commits. If the tran-

saction aborts due to a system of transaction failure, the recovery

algorithm must und the write by restoring the previous copy (before-

image) of the page

Suppose that a page written by an active transaction is not written

into the stable database before the transaction commits. If a system

failure occurs after the transaction commits but before the page is

written into the stable database, the recovery algorithm must redo the

write by moving the page to the stable database.

' . In j z recovery algorithm, the after-images produced by a tran-

saction must be written to stable storage (the database or scratch

. space) efore the transaction commits. This is called the g rIA. lop

If it is violated, a system failure shortly after a transaction Ti com-

mits could leave the recovery algorithm with no stable copy of Ti

after-images, making it impossible to redo Ti.

°o " . - ° - .



'* ] 1.1-L LII.I-.i. 6
Every recovery algorithm must also obey the I" aheg al&: if an

after-image is written to the stable database before the transaction

that wrote it commits, then the before-image of that page must first be _

written to the audit trail. Otherwise, a system failure could occur

after the after-image is in the stable database but before the before-

image is in the audit trail, in which case the write could not be

undone.

Categorization 2: Recovery Agurilthma

Recovery algorithms can be categorized based on the timing of

U updates to the stable database. There are four types of recovery algo- li

rithms: ones that require undo but not redo, redo but not undo, both

undo and redo, and neither undo nor redo. These types of algorithms are

described in Sections 3-6.

3. Algorithms That Undo But Don't Redo

For each type of recovery algorithm, we present a generic algorithm

based on our database system model and then we list example implementa-

tions. We describe this generic version by explaining how each command

.. is processed. In all of the algorithms, the first command processed for

Ti should add Ti to the active lib-.

For each operation, we mark by O(Ack}" the point at which the

recovery system can acknowledge to the scheduler that the operation has

been completed. Sometimes the operation has additional work to do after

the acknowledgement is sent.

Readi(Pj). Copy Pj from the stable database into a buffer. {ack)

Writei(pj). Copy the before-image of P.- (from the stable database)

to the audit trail. {Ack} Then* (after the disk acknowledges the write

in the audit trail), write the new copy of P, into the stable database.

- In every algorithm, we use IthenO to mean Owait for the previous ate;
to complete before pr deeding to the next step'.

_7

...... . ... . .. .- . .. -.. * .. -



7D-Ai38 891 DISTRIBUTED'DATABASE CONTROL FIND ALLOCATION VOLUME 1 314
FRAMEWORKCS FOR UNDER..(U) COMPUTER CORP OF AMERICA
CAMBRIDGE MR N K LIN ET AL- OCT 83

UNCLASSIFED R DC-TR- B3-226- OL-i F SB2-81 -C-B2BF/ 92 NL



0a.

L.0.

Ll liki 112.

W, JaM

4l

77.

L 3



-179-

Cimmiti. Make sure all pages written by Ti are in the stable data-

base. Then write Ti Into the commit list. {Ack) Then delete it from

the active list...

AbortI. rite Ti Into the abort list. Then undo all of Ti's

writes by reedina their bet ore-images from the audit trail and writin.

them back Into the stable database. [Ack) Then, delete Ti from the

active list.

Restart. Process Aborti for each Ti on the active list. Ack)

In this algorithm, all pages written by a transaction are written

Into the %table database before the transaction commits. Thus, redo Is

never needed, but an abort may require undo.

It is actually not necessary to write an atter-image into the

stable database m after the before-image Is written into the

"-" audit trail. The after-image could be left In bufter storage for

awhile, provided it is written to the audit trail before the transaction

- commits as required by the commit rule.

This algorithm obeys the log ahead rule in processing Vritei(P);

the before-image of Pj is written to the audit trail before the after-

- image is written to the stable database,

The order in which writes are applied to stable storage Is quite

sensitive in this (and most other) recovery algorithms. In this algo-

"° ritbm, for examples in processing commiti it is incorrect to delete Ti

from the active list before writing it into the commit list.

Remember that a system failure can occur during the processing of a

Restart. So Restart must also take care to write pages to stable

storage In order that It will be resilient to an system failure (fol-

loved by another Restart).

After Commit 1  or aborti has been processed, the audit trail

copies of paeps written by Ti are no longer needed and can be returned

to free space. The algorithm for garbage collecting these audit trail

paes depends principally on the audit trail's data structure. Ve will

not discuss garbage collection issues for any of the recovery methods

described In this paper.

- - -'- .o, -. ..
I "" " " " . K e" . °" ." ." " ." . .." . . .* .• "* - " • .. \*" -*• • ".". - ' - •". " • . . . . "•"S"• • --. ....-,-,?.-. -.. . .-.-. . . ."-.... . -. .-- .-. - , . . * .-.. 5-.. . . .. ... . . . .. .. . . .- - . . .

% S.. ,, ' .,, ,,. * -.. ,. -. ', ' ..- '''% -. .. -... ". . . . . .-. •."%/. . "-".'.' $ ,," .j " .



.. . ... -. . * . 4 . 4 . .- . . . . . ..

-180-

This type of recovery algorithm is used in a database system pro-

duct offered by Prime Computers [Du]v and the Adaplex database system O

Sbeing developed at CCA [CFLNR].

In Prime's algorithm, each page in the stable database has a -

pointer to its before-image in the audit trail. Each before-image in

.. .. the audit trail points, in turn, to the next older before-image of the

V... same page. Also, each physical page carries the transaction identifier

of the transaction that wrote that particular copy. And, for each

active transaction there is a convenient way to obtain a list of all

pages it has written.

':, The page pointers are used for two purposes. First, to process an

Abort, the pointer in each stable database page makes it easy to undo

the aborted transaction's writes. Second, they help avoid concurrency

control conflicts between queries and updates, as follows.

-. A .wAAm= is a read-only transaction. Reads issued by queries are

not looked in the scheduler but are passed directly to the recovery syb-

team (without being delayed). When the recovery algorithm receives the

first read issued by a query Ti, say Readi(Pj), it reads the commit list

and then selects the newest copy on the chained list of Pj copies whose

transaction identifier is on the commit list. Subsequent reads by Ti

are processed In the same way, using the copy of the commit list that

was road when the first Readi was processed. By reading in this way,.

"-" -" queries see a consistent copy of the database, yet, they do not set read

looks that night delay update transactions.

Another undo/no-redo algorithm is described in [Ra].

-. Algonithms That Redo But Don't Undo

In the generic algorithm, each command is processed as follows.

. Readi(Pj). If Ti 2reviously wrote Pj , then copy the after-image of
.Pj Into a buffer. Otherwise, copy Pj from the stable database into a

.. "':':"'" .''.: ;" .''. .'" .""" -'' .".". ." ""."." . ." . * ". '' " " L,: "-..'. .4-' "...-. ...- ' .'. . .- . "."'
- 4 , ' % ',' * ,. .' .,'.... '-, ,,,",. "," , " . ' ' '."-" ' *." , "."~* *" *""". """"' "" '.""' . . ..-. ,.."

4~p g . . . =4-4 4 . 4. 4 .' ""m r '. . j ' %." .. '• . . . ." . " .' " .. .... '. .- ... - . . .



buffer. (bck)

Vriteii,) Vrite the new value of Pj Into the audit trail. (Ack)

COMMi. Vrite TI into the commit list.* Then for each page writ-
ten bY Ti v copy the after-luag. from the audit trail into the stable

databese. lAck) Then delete Ti from the active list.

*Abort,. Write Ti into the abort list. lAck) Then delete it from
the active list.

Restart. For each Ti that Is on the active list but not on the
commit list, process Aborti, (Ack) For each Tj an the active list and
the commit list, process Coumitj.

In this algorithm, pages written by a transaction are not written

Into the stable database until after the transaction commits. Thus,
undo is never needed, but a Restart may require redo.

This algorithm obeys the commit rule, because the after-image of

* pages written by Ti are stored on the audit trail before Ti ccmits* It
also obeys the log ahead rule, since no after-Simag or a transaction Is
written into the stable database before it commits.

Implementations of this algorithm are described in ELSg IlL]. This
type of recovery algorithm Is used In the Ingres Database Systm (St]
and in SDD-1 [131].



-182-

-v's-

5. Algorithms That Redo And Undo

In this algorithm, cominds are processed as follows.

Itead 1j(1). If Tj previously wrote Pj, then copy the after-image of
j nto a buffer. Otherwise, copy Pj from the stable database into a

buffer. (Ack)

Vritei(Pj). Copy the before-Image and the after-Image of Pj intothe audit trail. {Ack) Then, saetime later, write the after-image into

the stable database.

Cenmiti. Write Tj into the commit list. Then, for each page writ-

ten by Ti, write the after-image Into the stable database (if it hasn't

already been done). jAck) Then, delete Ti from the active list.

Aborti. Write Ti into the abort list. Then, for each page written

by Ti, if Its after-image has already been written into the stable data-

base, write Its before-image Into the stable database. {Ack) Then

delete Ti from the active list.

Restart. For each Ti on the active list and the commit list, pro-

css Commiti. For each Ti on the active list but not on the commit

list, process Aborti. JAok)

Note that Abort may require undo and Restart may require redo.

This algorithm obeys the commit rule, since the after-image of each

Page written by Ti Is written Into the audit trail before Ti commits.
It also obeys the log ahead rule, since the before-image of each page

written by Ti is written into the stable database.

One can Improve the performance of this algorithm by using a varia-
tion proposed by Gray [Or]. Gray's algorithm processes comands as fol-

Iwo.-

ReadilPl). If Ti previously wrote Pj, check to see if the after-

Iage is* in buffer storage. If not, copy Pj from the stable database to

a buffer. (Ack)

..
m " 

°
.. "

-.'.,.'.'."%'.% %" "..'.-." ..-.. . .-. ........ -,' .%" . ... '." ',. .'"-'- . '. ', .. , ". "-.'. . , .. -. .-. .- ,.. " ....-.... . . . ." .-

• ° • . ° . • • . . °. j .. . o . . . . o . . . , . . o . _ , • . . . . . . . . . . o * 2 .o2 *. so • 4



-183-

Vrit.Ll(Pj). Copy the before-image of P Into buffer storage unless

it is already there. ,rite the after-image Of Pj into buffer storage;

this step must not overwrite the before-image. {Ack) Scuetime later,

write the before-image into the audit trail, leaving a oopy of the

after-mage in buffer storage. The after-mage may be written into the

stable database any time after the before-image is written into the

audit trail. Once the after-image is written both to the audit trail

and the stable database, It may be removed from buffer storage.

Commit. After all the after-images of pages written by Ti have

been written into the audit trail, write Ti into the oommit list. {Ack)

Aborti and Restart are the ame as the generic algorithm.

This algorithm obeys te log ahead rule because the before-Image of

-.. each page is written in the audit trail before the after-image is writ-

ten in the stable database. The commit rule is also satisfied since J

Ties after-images are written into the audit trail before Ti oommits.

When all after-images written by Ti have been written into the

stable database, Ti can be deleted from the active list. This tells

Restart that Ti does not need to be redone.

The main benefit of this algorithm is that the decision to write

pages into stable storage is usually left to the database systam's

buffer management algorithm. The recovery algorithm writes into stable

storage only when the commit or log ahead rule requires it.

A detailed implementation of this algorithm wtich incorporates

checkpoints and in which transactions write records instead of entire

pages appears in [LI].

6. Algcaithms That Don't Undo Or Redo

In the generic algorithml each command is processed as follows.

Readi(Pj). If Ti previously wrote Pj, then copy the after-image of

Pj Into a buffer. Otberwis, copy Pj from the stable database Into •

..... ...................- ... ..-....... .... '. ..-- 4-...- ........-.... -.... -.-.. •...... . .,....,.... .. ,.....,, ,".-" .•



-184-

kbuffer. (Ak

write1 (Pj). VWitj the after-Image of Pj Into the audit trail,

Commt 1. In a single Instruction, write the after-images of all

pages written by T1  Into the stable database and delete T1 from the

active list. (Ack)

Abort1 . Write Ti Into the abort list. (Ack) Then delete it from

the active list.

Restart. For each T1 on the active list, process Abort 1 . jAck)

, Z,- Unfortunately, this description Isn't very informative because it

relies on a magical instruction that Implements commit without even

using a commit list. Notice that if the magical instruction is avail-

able, then undo isn't needed because a transaction's after-images are

not written into the stable database before it commita, and redo Isn't

needed because a transaction's after-images are written Into the stable

database in the instruction that oommits the transaction.

We will describe an implementation of the Commit instruction simi-

lar to one presented in (Lo].

LarietiLAbZhdo EAn~ Alg=azi

Assume that the stable database In partitioned Into AIM..

, each of which is a sequence of logical pages. Each file,

Fj, has a MM Jat a, PTj, whose entries point to the pages of Fj. That

is, PTj[k] contains the address of the k-th page of Fj; this page is

denoted Pjk. Assume that each page table fits on one page in the stable

database. The stable database also contains in a fixed address a mar.-
maxg, M, that points to the n page tables, M[J] contains the address

of PT 3.

Abort and Restart are processed an In the generic algorithm. Read,

Write, and Commit are processed as follows*

For each file, Fj9, the first Read or Write that Ti issues on a page

of F causes the recovery algorithm to make a copy of PTj in buffer

storage, denoted PT31 . For each page Pjk that Ti writes, PTji[k] will

Vo- ..

.o .- , - ... ,. • - .". -. , . % " , % % -. " " %"% "% - " . - °% " .% - , . . ...



' . .4.4 *- --

-185-

point to the after-image of that page in the audit trail. (The other

entries in PT I are irrelevant.)

.edi(Pjk). If Ti previously wrote Pj, then opy the after-image

. of Pj from address PTjk[k] into a buffer. Otherwise, use M4 to find PTj

and copy Pjk from address PTj(k] in the stable database into a buffer.

.,.,w_ (Ack)

Writei(Pj). Write the new copy of Pjk into the audit trail. Then,

assign PTji[k] the address of that audit trail page. lAck)

Commti . Copy N into buffer storage. For each file Fj that Ti

wrote into, use (the buffer copy of) M to find PTj and copy it into an

empty page of buffer storage. (There are now two page tables for F.

connected to Ti: the buffer copy of PTj that was Just read and PTji.)

For each page Pjk that was written by Ti, assign to the buffer copy of

PTj[k] the contents of PTji[k]. Then, write PTj into a nn location in

- scratch space; denote this new copy of PTj by PT3. Then, for each Fj

that Ti wrote into, assign to (the buffer copy of) 14J] the address of

PT3. Then write M back to its fixed address in stable storage. JAck)

The commit algorithm prepares a scratch copy of the page table

% . (PT). This is accomplished by assigning to 1[] the address of PT3 for

each file Fj that Ti wrote. By writing M back to the stable database,

the old copies of the page table (PTj) are replaced by the new ones

(PT, 5).

The instruction that commits Ti is the one that writes the updated

M back into the stable database. Before this write, any read will use

the old copy of M to read the before-image of any page written by Ti.

After this write, it will read the after-image of any such page.

The recovery algorithm can only commit one transaction at a time.

That is, Commit is a critical sectioi. If two transactions were

(incorrectly) to commit oonurrently, each transaction might read a copy

of PTj into buffer storage, change the pointers to pages it wrote, and
write thIt copy of PT3 to the audit trail. Thus, two copies of PT3

would enist. Whichever transaction updated 1 first would lose its

updates to PTj, since they would be overwritten by the second transac-

tion when it installed IZU copy of PT by updating M.-

.-.. -. ".-...

I;.-' .-'. .. .-... ..-. .-.'.-, ... •"¢e.". .. .- • ." .-.<_, -.. .. -.......... .....-. '. .v ... . ... .--.... '.... 



-186-

A version of Loes's algorithm is implemented In System R's.

recovery manager [ONBLL].

7. Recovery In A Distributed Database System "0

A distributed database system (DDBS) consists of a set of sites

connected by a network. each transaction can read or write data stored

at any of the sites.

Ve model a DDBS by a set of processes called data maduln (DMa) and

kAnanki madm (Th&). A EN is a centralized database system as

defined in Section 2. It processes Reads and Vrites on pages stored at

that DN. It also processes Commits and Aborts, vhich permanently

install or undo the writes of a transaction at that D.

A TM interfaces transactions and De. Each transaction, Ti, sub-

mita omnmands to one T, say T1 a* To prooess Readi or Vriteij, aim-

ply sends the command to the EN that stores the data being road or writ-

ten. Let Aotivei be the YMs at which Ti va active. To process Aborti,

Ta unst ensure that every EN In Activei processes Aborti. To process

COmiti, THa should try to ensure that every DI in Activei processes

-v Commiti.

Unfortunately, Tls and DIMs may fail at unpredictable times. THa

must process commands so that such failures never cause it to produce

incorrect results.

We assume that process (1.e., T and EN) failures are Nclean'. If

a process does not produce an expected response to a message within a

timeout period, then the process has "rsally failed. If one process

believes another process is down, then JMj processes believe that the

process is down, And, when a process reoovers, it recognizes that It

has just recovered from a failure and runs a special *reintegration pro-

tocolN. Mechanisms that support these assumptions are beyond the scope

of this paper. (See [ABC, HS, FR, Va].)

.,.



- - .m J ,J ; ' . . . . - . , . . .. . -- - -
:  

' -x . - - - -

-187-
.ab IM keeps an active list, commit list, and abort list in stable

storage. And, for each T1 on the active list, it maintains Activei in
stable storage. When it receives a Read or Write from Ti, it sends the

command to the appropriate DM4 and adds that BM to Activei. For the

first such Read or Write, the T( also adds Ti to its active list. It

" processes Abort and Commit as follows.

Abort 1 . Add Ti to the abort list. Then, send Abort i to each DM in

Activei. Wait for every I4 to acknowledge that it processed Aborti.

(Ack) Delete Ti from the active list.

CoCiti. Add Ti to the commit list. Then, send Commiti to each i4
in Activei. Wait for every DM to acknowledge that it processed Commiti.

(Ack} Delete Ti from the active list.

If a 114 fails and later restarts, then it processes a Restart in

the usual way: For each Ti on both the commit list and the active list,

process Commiti. For all other Ti on the active list, process Aborti.

If a 114, say Me5 , discovers that a DM4, say ID4b, has failed, then it

normally processes Abort I for each Ti that has Dm4b in Activei. But what

if DMb is in Activei and T a has already sent Commiti to other DMs in
Activei? In this case it can't abort Ti, because Ti my already be com-
mitted at some Ds. Instead, it must wait for E4 b to recover. When it

does, 11a sends COMMLti to D1 4b too.

Each TM must obey the commit rule. That is, it must not send

Comit t  to any Dm4 until every DM4 in Activei has Tits after-images on

stable storage. Otherwise, a DM in Activei may:

1. Fail before receiving Comfiti.

* 2. Upon recovering, discover from Tha that Ti has committed. 0

3. But be unable to process Commit 1  because it lost some of Tits

after-images due to the failure.

9P' To obey the commit rule and thereby prevent (3), ?ma can use the

".Q- 9b a.BmLt protocol for processing Commit commands [LSJ. Phase
one begins when TMa receives Commit i . It then sends a command called

r--. 
-,~~~~~.,.............,.... ................ .. ....

r's-.A u2 . *= ., ..:- ~-



-188-

* mdito each M1 in Activoj. A E11 processes Endi by first ensuring that

Ti'e af ter-images at that M~ are on stable storage and then sending an

acknowledgment to 1T1,* Whenl THa has received the acknowledgment from

every EN4 in Active 1 , phase one in done. jAck) In phase two, 111a sends

Commit 1 to each IDM. .,

*Since THa does not send Commiti to jLU P14 until iurz Em1 as ack-

nowledged End 1, no P14 in Active1 will Process Commit 1 until every D14 has

Tits after-image on stable storage.

If aP14,say fails before acknowledging End1 , then TMa won't.*- -

leav phae oe. Snce M5  cannot be sure that D~b Will be Able to
process Comit 1 when it recovers, 114k must either wait for D) b to

*recover or abort T1 by sending Aborti to every IDK in Active 1 . In prac-

* ticeo ma simply waits a prespecified timeout period after distributing

the Endi's; if it hasn't received an acknowledgement of some Endj by

* this tie, It assume the IN4 has failed and aborts T1V

Until a I14 processes End 1, it may unilaterally decide to abort T1
by sending an Aborti command to m~a. Once a DII acknowledges End1 , it

* loses its right to unilaterally abort Tit and my only abort T1  if

* directed to do so by m~a.

OWN""

The TM algorithm presented above has a serious disadvantage. Sup-

pose m 5a sends Endj to rEib, 1D4b acknowledges End1 , and then THa fails.

Since P1Ib doesn't know whether T1 will commit or abort, it has to wait

*for m~a to recover. In particular, it must hold Tile locks until Ta
*recovers. If TMa is supervising many active transactions, large por-

tions of the database may be locked and unavailable until ma recovers.

We can avoid this problem by providing each TM with one or more

backup Ills. If a TM fails, the backup& can take over its functions.

One such algorithm in thraI-1phaaanaQMj [Ski, 2, 3, SSJ. Each

backup for m~a maintains a commit list, CLa. To process commit 1 Tha

r behaves as follows.



,.. *% 1,TZ

-189-

1. Th~mends End1 to each JI In Activ•j. Then, it waits for all Ws to

•. %, acknowledge their Efndi s.

p.2. =a sends a command called Preoomitj to each backup 7M. A TM
0oesses Precommiti by adding TI to its copy of CLa, and then send-

":" lig an acknowledgement to TMa. THa waits for all backups to ack-

nowledge Prooommit.,I- 3. M a sends Commit i to each DI In Active1 .

Essentially, this in the two-phase commit protocol w a new phaze
added (step (2)).

If a backup TM fails, TM can ignore the failure if the nuaber of

backups is still acceptably large; otherwise, it should acquire another

backup TM to replace the failed one.

Suppose ma fails. When the backups discover the failure, they -
.- ' elect one of their member Mes, say Tb, to replace Mha. After Thb is

elected, every other backup TM sends its copy of CLa to 7Mb. 7Mb takes
the union of those copies and distributes the result to other backups.

This becomes everyone's copy of CLa. When this process Is complete, TMb

o..- tells all DEs that it has taken over M's functions.

".' If a DM wants to know what happened to a particular transaction,

TI, that was supervised by Tha, it asks TMb. If Ti is in Thb' CLa,

then Thb tells the DE to commit Tj; otherwise, it tells the I to abort

Ti. Thus, a transaction that was supervised by THa is committed If and

only if it reached the second phase of three-phase commit and at least

one of Its preoommits reached a backup TH (that didn't fail).

The algorithm for electing a backup TM to replace Ma is easy, as

long as none of the backups fail or recover from failure during the

election. Assume each TM has a unique identifier. To elect a replace-

sent for Tha, each backup exchanges its Identifier with every other

backup. The TM with the largest identifier wins the election and takes

over.

If backup THs fail or recover fro, failure during the election, the

.1. above algorithm can misbehave. Each of two TMe can conclude that It won

the election. Algorithms to prevent this behavior are discussed In [Goa,

33'.r'



q- -m

A.A -190-" )

It is possible that Us and all of its backups fail during a abort

time period - too short for replacement backups to be acquired. This

os called a otal failure of m~a; no 114 can ever take over its function.

- Ma must wait until 1141 and enough of its backups have recovered that .

the oorrects status of Ta's transactions can be determined. Algorithms

for recovering after total failure are discussed in [Skl].

Many variations on three-phase commit protocols have been proposed '

and analyzed. See [ABDG, AD, Co, Sa, HS, La, MPM, TGGL].

If a DM fails, transactions that need that DM's data must wait for

the DM to recover. To avoid this delay, the DBS can isjiate data;

that is, it can store parts of the database at more than one Dr. If one

copy is unavailable due to a EN4 failure. other copies can be used

instead.

Many ooncurrency control algorithms are known for keeping multiple

copies of each page mutually consistent. liowever, even if concurrency

control is performed correctly, failures can cause transactions to mal-

function.

For example, suppose P1 has copies Pla and Plb at M1ta and Mb
(reap.), and P2 has copies P2c and P2d at E11c and Ms4d. T I reads P1 and .'.

writes P2 ; T2 reads P2 and writes P 1 . fsplicated data is handled by

the *intuitive* algorithm: to read data, read any copy; to write data,

write all available copies. The following execution obeys these rules,

yet it is incorrect.

lead1 ('la)--- D-d-f-ls -*Writel (P20)

lead2 (P2d)- DMa-fails"-4 Write2Pl1b)

- This execution is Incorrect because T1 reads (a copy of) ?I before T2

writes %L, while T2 reads (a copy of) P2 before T1 writes P2. The first

condition means that T1 appears to precede T2 , while the seOond condi-

tion means that T2 appears to precede T1 . These conditions cannot both

bold in a serial execution, and so the given execution is Incorrect.

S."..-.... - %.. -..... %* . ..- ,.-.... .-..... .. " .. -•..•.



-191-

Algorithms for correctly processing commands on replicated data in

the presence of DM failures appear in [ABDG, AD, Ea, Gi, HS, MPM, Thi.

No consensus on the best approach to this problem has yet emerged.

8. Network Partitions

A partition is a communication failure that splits the network of

sites into two or more subnetworks such that each site in one subnetwork

is unable to communicate with any site in any other subnetwork (besides

its own). After the partition, the DDBS must decide how to continue with

transactions that were active at the time of the partition and those that

begin executing after the partition.

The latter transactions are easy to handle. A transaction can be

processed normally provided that it reads and writes pages that reside in

one communicating subnetwork and that none of the pages it writes have

replicated copies of the subnetwork. Otherwise, the transaction cannot

be processed at all.

Transactions that were active the time of the partition are more

difficult to handle. If a transaction was (and needs to be) active only

at sites in one communicating subnetwork, then it can continue being pro-

cessed normally. If a transaction had not yet processed its End at some

site in a subnetwork, then the transaction can be aborted in that subnet-

work. If all sites in a communicating subnetwork have processed End i, and

one or more have also processed Commit. (resp. Abort.), then the trans-1 1

action can be committed (resp. aborted) at all sites in that subnetwork.

If all sites in a subnetwork have processed Endi, but none have processed

Commit. or Abort., then the transaction is stuck. This subnetwork cannot

-- A



-192-

determine whether the transaction was committed or aborted in some other

.. subnetwork with which it cannot communicate. Thus, it must leave the . 0

transaction in an active but blocked state, until the partition is

repaired.

Avoiding this blocking situation has been the subject of much dis- 0

cussion and research. The probability of this event can possibly be

decreased by careful database design and careful selection of backup TM's

for three-phase commit. However, the situation apparently cannot be elimin-

ated entirely [Skl].

V.

'ZU

A.4..'.,I,

* '.

- .4.*

' *'U

°o . .. -- . *. -... .. . % . ...

*.*...*.** .... - - .- ,.

'U - . - "4P : * r!.k :J ... & .. .'.



-193- 7

9. Ref erences

[AI ALibers P.A., 0.0. Belford, J.D. Day, and 3. GrapaL. 'Multi-copy

Resiliency Techniques,' MM&bi~fiDk Munsumml .S.. lath-0
* ale. P.A. Bernstein, D.V. Shipmn, eds.), IEEE, 1976, pp. 128-

176.-

EAD03 Attar 3., P.A. Bernstein, and Me Goodmn 'gSite Initialization,
Recovery. and Back-up in a Distributed Database System,' Z=.
WAhdl aXwj Feb. 1982,9 pp. 185-202.

CAD] Alsbergo P.A., and J.D. Day. 11A Principle for Resilient Sharing
of Distributed Resources,'fa MZk. aLk~a~ a.
Oct. 1976.

EADRE] LAdler, S., 1. Ding, K. Zxvarang C. Hauser, V. Kin, J7. Mmhi, R.

Williams. 'lSystem D: A Distributed System for Availability,*

h=-. A~L Sept. 1982, PP. 33-0.
(Dal Bartlett, ... 'gA 'NonStop' Operating System,' in j1k Thmnr sA&

Pantin at Iualiabja kAXAa DusIga (Sieviarek and Swarz, eds.)#
Digit.l Press, 1982, PP. 453-460.
BB] jorkq L.A. 'Recovery Scenario for a DB/DC System,'l I=. AM

Nll fdmL, 1973, pp. 142-146.
CUD] Bjcrk L.A., and C.T. Davis. I'The semantics of the preservation

and recovery of integrity in a data system,' ji.T-fl2.5.Z De.
22t 1972.

(DO1] Bernstein, P.A.,9 and V. Goodman. 'Concurrency Control In Distri-
buted Database Systems,' ACH rdmakLng urvzA 13# 2 (June 1981)
pp. 185-221.

CUB Bernstein, P.A.# and N. Goodman. *A Sophisticate's Introduction
to Distributed Database Conourrenoy Control,* I=a. AMh JULD
Sept. 1982, pp. 62-76.



-194- -

(SIR] Bayer, R.9 H. Holler, and A. Raiser. 'Parallelim and Recovery

In Database Systems,'2 AM ZrAn.. an Daamaa AkIMa Vol. 5, 9 o.-
2 (Jun. 1980)s PP. 139-156. '

EB(58] Bernstein# P.A.$* D.W. Shipuman and J.B. Rothuis, BConcuri'ncy Con-

trol in a System for Distributed Databases (SDD-1) 'AM 2rAna na
*~~~~ gaaaaa 5I (March 1980),9 pp. I8-51.

* (Cc] Cooper,, B.C. "Analysis of Distributed Comit Protocols,'frn.

M~AIMcnr Z=- an sg amu tkka ACM, June 1982v PP. 175-
183.

(CB] Cheng, W.K. and 0.0. Belford. 'The Resiliency of Fully Repli- .-

cated Distributed Databases$* fr=n. itk Berkuley Jarkahan. Feb. IIj

1982, pp. 23-0.

E CFL1! Chan, A., S. Fox, T.A. Landers, A. Iori, and D. Ries. 'The

Implemsentation of an Integrated Concurrency Control and Recovery

scheme.' 9 Z=- ACH AIM= .fanL. n an aamw= at .DMAL June 1982,p

EDa] Davies, C.T. 'Recovery Semantics for a DB/DC system,' Z=a. ALJ
X&I'l fdm. 1973, PP. 136-141.

(Do] Dolev, D. 'The Byzantine Generals Strike Againv AE. at Algam

L~bmo 3,P 1 (1982).
[ Du] Dubourdieu, D.J., 'Implementation of Distributed Transactions,'

fra..Z~B rkuley lark&aha.n ±~ia DAta SMUN=g n am
ComuteZ~r laxrka 1982, pp. 81-.9E*

-: (a] Eager, D.L. 'Robust Concurrency Control in a Distributed Dataw

base.' Univ. of Toronto TR CSRG #135t Oct. 1981.

(BOLT] Emiaran, K.P., J.I. Gray, R.A. Lorie, and 1.1.. fraiger., 'The

Notions of Consistency and Predicate Locks in a Database System,'

L2==-n ACM Vol. 19, No. 11t Nov. 1976, pp. 624-633.
E1M] Fischer, M.J. and A. Michael. 'Sacrificing Serializability to

Attain High Availability of Data in an Unreliable Netvorkg' 2Ma.

1~At A~M hZ1=Z-ZIm iAm. n frmnablmaL nt ktah a kzaaha
ACH, Mar. 1982, PP. 70-75.

E*& [G] arcia-Molina, Ho 'Elections In a Distributed Computing System,'
I= Zfrannampt&aC-31, tI(Jan. 1982), PP. 48-59.

E 01] Gifford,, D.K. 'weighted Voting for Replicated Data,' finn. Z,

han.. mt~ galgsAlmmau a. ACM, Dec. 1979, PP. 150-
- 159.



L -195-

[Or] Grey, J.E. VMotes on Database Operating Systems,' in .QNWuzai
kalma: =a iAxnw Smua Spinger-Verlag, 1979.

EONLLI Gray. J.9 P. NoJones, I. Blasgen, B. Lindsay, 1. Lorie, T.
Price, F. Putzuloo and I. Traiger. dThe Recovery Manager of the
System R Database Manager,' AM goamat1g SuZa 13p 2 (June

1981). pp. 223-242.

[331]I Harder. 7., and A. leute "Optimization of logging and recovery
in a database system,'9 in kkabam Arah~±ltnr Bracohi and
Nijasen *do,, North-Holland, 1979, pp. 151-168.

[312] Harder,, T., and A. Reuter. 'Principles of Tranhaction Oriented.

Database Recovery -A Taxonomy,' Univ. Kaiserslautern TR 50/82.

EBS] Hammer, M.M.t and D.V. Shipman. 'Reliability Mechanisms for
SDD-1: A System for Distributed Databases,' A91 Transa& nn DA-_
banAa.BaL. Vol. 5, No. 5 (Dec. 1980), PP. 431-M6.

EKim] Kim, K.H. 'Brror Detection, Reconfiguration and Recovery in Dia-

tributed Processing Systems,' fdwt. .an MU1At' Lanmaklng IE,~

1979, pp. 284-294.
[La] Lemport, Le '"he Implementation of Reliable Distributed Mul-

tiprocess Systems,'0 .Gama~wUlrak~rks I 2 (1978), tPP. 95-114.
[Li] Lindsay, 3.0. at al. "Notes on Distributed Databases,' IBM

Research Report, No. RJ2571, July 1979.
[Lo] Lonep l.A. 'Pbysioal Integrity In a Large Segmented Database,'

AM ZrAn. an Daaft AMaz.. Vol. 2, pMo* 1 (Mar. 1977), P. 91-

[1.5] Laupson# S.W. and B. Sturgis, 'Crash Recovery in a Distributed

Storage System.' Technical Report,, Xerox PARC, 1976
ELSPJ Lamport, L.9 R. Shostak, and M. Pease. 'The Byzantine Generals

Problem,' ACK krAn. nfguiig LAMgiaga iad hA~Tm Vol.
49 go. 3 (July 1982)9 PP. 382-401.

[ML] Menasce. D.A.# and 0.3. Landes. 'On the Design of a Reliable

Storage Component for Distributed Database Management Systems,'

Z=-n A=k ILDA Oct- 1980, PP. 365-375.
[MPH4] Menasce. D.A., G.J. Popek, and R.I. Muntz. 'A Locking Protocol

for Resource Coordination in Distributed Databases,' AM 2n=.
an =.am ahaa &.t Vol. 5o No. 2, (June 1980), pp. 103-138.

ECI] Parker, D.5., and R.A. Roman. 'A Distributed File System hArchi-

teature Supporting High Availability,,' Z=a. AU .&UL Sept.

1982t pp. 161-184.



-196- '

[PSL] Pease, ., R. Shostak, and L. Lamport. 'Reaching Agreement in '.-

the Presence of Faults,' 9=0 27, 2 (1980), pp. 228-234.
E (a] Rappaport, R.L. 'File Structure Design to Facilitate On-Line

Instantaneous Updating,' 8rI=. aL I&~ 1MTh A10=Q rd, pp. I1-

[Ree] Reed, D.P. 'NImplementing Atomic Actions#,' fr=. A.M uaQn
922rMIA& kAlgua frn9.I2la ACMI, Dec. 1979.

Eleu] Reuter, A. 'A Fast Transaction-Oriented Logging Scheme for Undo
Recovery.' I= la kan ~A=,~ Xg., 3-6 (July 1980), PP. 348-

356.
[Sc] Schlageter, 0. 'Enhmnceaent of Concurrency in DBS by the Use of

Special Rollback Methods,' J DA knhtentuare, Bracohi and Nijsen
eds., North-Holland, 1979, PP. 141-149.

(Ski J Skeen, D., 'Crash Recovery in a Distributed Database System,'

Ph.D. Thesis, Dept. of Elec. Fag. and Coup. Sci., Univ. of Cali-

fornia, Berkeley, 1981.

* ~[Sk2] Skeen, D. 'Nonblocking Commit Protocols,' 0Z=. IS.ZA-ZilQ

gml- nL. Hagawil a .&t.Dta, ACM, pp. 1 33-1il7.

E5k31 Skeen# D. 'A Quorum Based Commit Protocol,'f Z=a. AM Brkeley

MgrkahQp Feb. 1982, pp. 69-80.

E~t] Strom. B.I. 'Consistency of Redundant Databases in a Weakly Cou-
pled Distributed Computer Conferencing System,' Z=a. 5=h kzJWk

[55] Skeen, D., and M. Stonebraker. 'A Formal Model of Crash Recovery ..

in a Distributed System,' Z=,s 5=h Bekley VrkAho, 1981, pp.

129-14l2.

E StJ Stonebraker, M. 'Concurrency Control and Consistency of Multiple

/copies of Data in Distributed INGREStO I=1 Tr~ans. .n A.

kg., 83-5, 3 (May 19779)t PP. 1W8194l.
(TOOL] Traiger. I.L., J. Gray, C.A. Galtier, and B.G. Lindsay. 'Tran-

sactions and Consistency in Distributed Database Systems,' A
ki a Di ~ma kAtam Vol. 7, No. 39 (Sept. 1982), PP.

323-3il20

(Th] ?bomas, R.H. 'A Majority Consensus Approach to Concurrency Con-
hE tr ol for Multiple Copy Databases' A01 kima. an DAL&W=a kI=.,

4t, 2 (June 1979), PP. 180-209.

.. --.. : ..- *~* ~ *



-197-

(Vell2 Verhofatad, J.H.S. 82eoovery Techniques for Database Systmas,
APH rmaatUS Anunxa 10,p 2 (1978), ppp. 167-196.

[1.23 Verhofatad, J.LS3. 'Reovery based on Types,' MIkb~~~.
Bracohi and Nijasen eds., North-HolisMt 1979, PP- 125-139.

Eva] valter, 3. *A Robust and Ifficient Protocol for Checking the
Availability of Remote Sites,' 2M. h.L Upkeluz Xgrkahapa Feb. -

* . 1982, pip. 45-68.



.............................................................................................................................................

-198-

S..

5%

~ b

5%

%:* %
*~5

S
SECTION VII

AN OPERATIONAL P~DEL FOR
.1~

DATABASE SYSTEM RELIABILITY
S

5'

*5 *%

Vassos Hadzilacos

*.1* 
4~

.j~q

5-, 9 *555

5'.. *9

* .v*.

.5,.

5%~*S

.5.

.5.-

* ~5~4

5,

*

-U.

*5*5

* .*...*.*.* 5 5 . .~ :-7 . *. v~. ~ ~ ~** ~. ~. *. *. 5. .. ** ~



7777477- - v W 7.7

-199- "i

V.'o

•1. INTRODUCTION

,,191

1.1 Overview

In this paper we develop an operational (i.e. state-based) model for

studying reliability of database systems (dbs). The system is described at

any point in time by a "system state". Reliability-related properties of the

system (e.g. "resiliency") can be expressed as predicates on the system state.

Transaction processing algorithms (hereafter called simply "algorithms") can

be described as state transition functions, mapping the current system state

to the next. Finally, correctness and other reliability properties of

algorithms can be proved formally by examining the system state sequences

that can be generated by the algorithms in question.

The paper is organized as follows: In the remainder of this section we

motivate our model by informally describing the problem of dbs reliability.
,°." o.-

The model itself is introduced in Section 2. In Section 3 we use the model

to define algorithms and prove their reliability properties. Section 4

extends the model to describe certain aspects of reliability in distributed

dbs. Section 5 comments on the model and suggests extensions.

1.2 The Problem of dbs Reliability

- A database is a set of data items. For each item x there is a

designated address in stable storage (e.g. disk) where a value for x is

stored; x's designated address may change over time. The values stored at

the designated addresses of all data items at time t comprise the

materiaZied database at t [HR82].

To updare x, a transaction provides the dbs with x's new value by

placing it in a (volatile) main memory buffer. Later the dbs may copy the

%° °° . ~ .. . .

l,:,:,_ ._,,, _,,_._ ". .. , -.. ,.... . .... .. .. .. . .... . -. .,.,.. - ' , ' ' .,,,.... , . ., % ,".. ,•,.. . , . .,. %. ,• .



-200-

value of x from the buffer to x's designated address either directly or

after first copying it to another area of stable storage, called the audit .0

traiZ. So, in effect, values of a data item may be found in three places:

in a main memory buffer, in the audit trail, or in the item's designated

address.

Until a transaction T executes its "Commit" operation, it is always

possible forthe dbs to abort T. This means that all updates of T to the

database must be "undone" (by setting all updated items to the values they

had prior to being changed by T). Also any transaction that read values

produced by the aborted transaction T must be (recursively) aborted as

well. Once, however, the dbs agrees to process a transaction's commit

operation, it cannot subsequently abort it.

The problem of database reliability is essentially a fault tolerance

problem. We want the dbs to correctly process database operations submitted

by transactions, in spite of transaction and system failures. A transaction

faiZure amounts to that transaction's being aborted. A system faiZure amounts

to the loss of volatile storage: in such an event, the dbs must reconstruct

from the contents of stable storage only (i.e. the materialized database and

the audit trail), the state of the database reflecting the execution of

exactly those transactions that were committed by the time the system

failure occurred.

An algorithm for processing database operations is fault tolerant with

respect to transaction and system failures if it can, at all times, (a) abort

an uncommitted transaction without having to (recursively) abort a committed

one and (b) reconstruct the correct state of every data item from values

stored in stable storage.



-201-

Accordingly we can distinguish two aspects of dbs reliability. The first

aspect concerns the parallel processing cf transactions. We want to allow

only such parallel executions as will not require aborting a committed trans-

action in the face of a transaction or system failure. In 1H82] we

characterized executions that have this property, called recoverable execu-

tions. In such executions, a transaction reads the value of a data item only

if it was written by a committed transaction.

The second aspect of dbs reliability arises from the general principle

that fault tolerance requires redundancy. All known dbs reliability algorithms

require that some "redundant" data be kept in stable storage. This data is

redundant in that it is only needed in case of a (transaction or system)

failure. In essence, this redundant data forms what we previously called • • , ..

the audit trail.

Bernstein and others IBGH82] present a classification of algorithms in

terms of their "undo/redo characteristics". We say that an algorithm nr.a

require undo if it allows an uncommitted transaction to record updates in the

materialized database; if the uncommitted transaction aborts, its update must

be undone. An algorithm may require redo if it allows a transaction to commit

before allits updates have been recorded in the materialized database; if the

system fails, the transaction's updates must be redone. We thus have four

"classes" of algorithms:

Requirements
Algorithm UNDO REDO 1.4

Class 1 [G78], [Li79] maybe maybe
Class 2 [R75], [D82] maybe never
Class 3 [LS76], [ML80] never maybe
Class 4 [Lo77], [V78], [HR79] never never . .--

In Section 3 we'll cast these four classes of algorithms in terms of our model.

% -,V . .|.• . . .- . . . . . .



-202-

S.-2. THE MODEL

* 2.1 Preliminaries

in this subsection we summarize some basic definitions and notation.

For motivation and fuller discussion see [H82].

Let D= {x~y,z,. . .. be a set of data items. The symbols R. 1I, W. 1I,

A.V C. where i E 3N and x ED are called database operations. R. [X] is
1 1

the read operation (issued by transaction i for data item x). W. 1I is

the write operation (issued by transaction i for data item x). A. is

the abort operation of transaction i and C. is the CommTit operation of

transaction i.

S. Two operations conflict if f

(a) they are read or write operations accessing the same data item and (at

* least) one of them is a write operation; or

(b) (at least) one of them is a commit or an abort operation.

A transaction Ti. is a partial order (OP.,<.) where

Wi OP., {R, [x] Wi Ix] ,Ai,C.ix ED)

(ii) Any two conflicting operations in OP. are ordered by <if

(iii) A.E OP. iff C .Iop., and

(iv) If A.i EOP.i then for every aE OP. - {A.), a<. A. and if

C. ECOP. then for every a EOP. {C. a<. C..

A cc"'plete log L (over transactions T.I <~i<n) , is a partial order,

L -(OP 1< )where
L L n

Wi OP =U OP.,
L1

<iL) C < for l~i~n, and

(iii) Any two conflicting operations in OP are ordered by <L~ L*

N. 
e .

il . 'I PA! .. * . . . . . . . . . . . . . .



A log L- (OL L is a prefix of some complete log L*- (OP <-"f c.E L (O , L )  s prfxosoeomet oPg L . isOL ,L) --

if c E OPL transaction T. i8 committed in L; if A.E OP Ti i

aborted in L. Com(L) ! {Ti'CiEOPL}. The projection of a log L onto a set

of transactions T, denoted WT (L), is the restriction of L to the domain

OP - U OP..
L1

T.V

For mathematical simplicity we expand logs with a (fictitious) initial-

izing transaction T0  that writes all data items and commits [P79]. That is,

T0  (OP0 ,<0 ), where OP0  {W0[x] IxE D) U {C0 } , and <0 { '{0) jxC D}" 0 xD

All of To s operations precede all other operations in the log; i.e. if

the log is L, for any aEOP0  and any bEOPL -O p , a <Lb.

The Herbrand semantics of read and write operations in a log L, denoted

.MLRix]) and ML(Wix]) respectively, are defined inductively on < as

follows:

(1) ML R. Ix]) =M (W. [x]) , where W. Ix] < R Ix] and there is no
L i L L Li

:. .:.:.W k [x]E€OPL  such that Wj~ [x] <L Wk[x] <L Ri x]..-"
° .such that '< 1IWk" OL L Lk L i

(2) Let R. y I ltm be all the read operations in T. such that
it •

R "y ] <. W.[x]. Then M (W.i[xl) i. (M (R[lyl) ... ML(R[yM])).
i t 1 1 Li3 ix L i l L i m

In particular, if there is no R [Y] EOP. such that R [y] <i W. [x],

then M (W [x])= C ) " .

L i ix

.Pa (X,<) is a prefix of P' = (X',<') if XCX', < is the restriction of

<' to X (i.e., a<b iff a,bEX and a<'b), and X is closed under
av.\ <' (i.e., if aEX and for some bEX', b<' a then bEX).

.- being a discrete (indeed, finite) partial order, we may induce on the -1
order of its elements. (The "order" of an element of a partial order <,
is equal to the number of elements that precede it in <.)

@O7e -- O@ ..

g- is an uninterpreted function symbol.
ix

. °4



-204-

Note that, by our assumption concerning the expansion of logs by them0
initializing transaction To, part (1) of the definition is well-defined,

* since W ox] precedes any R ix]. Also, by part (2) of the definition,
0 1

ML(W0ixJ)--g( ), for any xED.

"" - The Herbrand universe of a log L is the set HU(L) = {M (a) a EOP
L L

* is a read or write operation}. The semantics of a Log L, is the functiuji

M[L]: D -HU(L) defined by M[L] (x) =ML(W ix]) where W. [x] is the

< -maximum write operation on x in OPL . A log L is recoveraLZe iff for
L L

every prefix L' of L and for all aL)OP where a is a
Com(L')

read or write, M L (a) =M7 (L')(a). This implies that at no point in

Com(L')
the execution represented by log L has a committed transaction read a value

written by an uncommitted transaction [H821. The class of recoverable logs

is denoted RC.

2.2 Basic Definitions

Let 7 be the set of transactions with operations accessing the data-

base D. Let 2 be the set of logs over transactions in T. Let

HU= U HU(L) be the Herbrand universe of logs in 2.
LET
A databoase state, S, is a mapping from D to HU; S: D-HU. A system

state, 0, is a triple a= (SoSWI ,L ) where S is a database state,

L EY and the stable write information at state 0, SWI C D xHU x T.
-.. 0 -- - 0-.

In terms of the informal discussion in Section 1.2, the intended inter-

, pretation of the system state 0 is as follows. The database state represents

the materialized database: S x) =v, means that the value of x stored in

the materialized database is v. The stable write information, SWI, re-

presents the audit trail: (x,v,T.) ESWI, means that transaction T. wrote
1

value v into data item x, and that fact is recorded in the audit trail.

.< .i-: <-T.....'-.?-': .'..[- --:,.. "....................."..."........."-.......-......-...." . .- .". ?._".. .''-

" - , -,- -** , -,-,-' Ui '.,., [.' .< , -'-.: ,-> -'.-.''-. -.,- -' " -i---" '--- '.-- .--- ' .. - .--. . .,. -.' -... -. ' "



-205-

Finally, L represents the e.ecution that produced the current system state,

0: if W. Ix] EOPo, the value M (W Ix]) is written to a volatile memory

buffer. When the dbs records this value in the audit trail, the new syster,

state, say a', will have (xM (Wix]),T.) ESWI,. Similarly, when the
LC1 1

value is recorded in the materialized database, the new system state, say

0", will have SCx) =M (W J*x]). Hoping that this informal explanation

provides a basis for understanding the basic building blocks of our model

we revert to its further formal development.

Definition 2.1. The last cacmitted writer of (data item) x in (system

state) 0, lcw,(x), is the transaction T. such that C., Wi Ix] COP and
LC

for all other T. such that C., W.[x] OP we have Wj1x] < W ix]. 021
LO ) . LO i2.

Note that by the assumption concerning the initial transaction To ,

and the fact that write operations on the same data item (being conflicting

operations) must be related in the partial order of a log, lcw (x) is always

well-defined.

Definition 2.2. The committed database state of (system state) a, CS is

the database state defined by: CS lx) = M IW.ix]), where T.= lcwox)" 02.2..
LC Ii w() 0 0.

Let E be the set of all system states. We distinguish a special system

state, %O, called the initial system state where: S0 o(x) gox ( ), for allg,)_
0

xED, SWI =0 and Lo=C.

4 0 0

Definition 2.3. A system state a is resilient iff for all xD, either

(R1) S, (x) CSO (x), or

t We use the symbol £ for the "empty log", containing only TO; i.e. OPC =OP0

and < "<o.

F:' ' ......... ' ' '..................



-206-

(R2) (x,CS (x) ,lcw X)) E SWI 02.3

Intuitively, the definition of resiliency says that the "correct" value

"- of every data item in the system state described by 0 can be found in

stable storage--either in the "materialized database" (S ), or in the "audit

trail" (SWIc ).

If (RI) or (R2) holds for a particular x in a system state 0 we'll

say that 0 is resilient for x.

LEMMA 2.4. 0 is resilient.
0

Proof. For all x ED, CS Wx M (W 1I) S Wx. Hence (Rl) holds
0 0 E 0 0

for all xED for 0 2.0' 2.4

2.2 Algorithms and their Properties

An alZorithwm PiA (for processing data operations) is a set-valued operator

on E, viA: Z.2 , such that if cy' Ei (a) then L0, _L0 .

A history o is a finite sequence of system states; i.e. otEZ*. A

history a0.. .o is VA-compatible iff 0. Ei (a ) for 1(i<n.
12- n A i+l A i

Definition 2.5. An algorithm vA is correct iff for any vA-compatible

history 0O1.O 0 na is resilient.t 2.5

Intuitively, an algorithm is correct if it transforms the system state

in such a way that at any state reachable form the initial one, we can con- - -

struct the "correct" value of every data item from information in stable

storage.

Here andthroughout the paper, by 0 0 we mean specifically the initial
system state, whereas by a 1 <i <n we mean arbitrary elements of Z.

%

~.. . . . . . . . . . . . . . .,



P-207-

It goes without saying that there is quite a gap between this description

of an algorithm and its concrete description in terms of a realistic pro-

graming language. The assumption underlying our model is that each transi-

- tion fom o to each element of iiA (a) can be implemented atomcaNly. If

this is not the case, our results are mathematically sound but pragmatically

meaningless. Often such an atomic implementation is far from obvious. For

implementation-related issues of the algorithms to be described later see

the references cited in Section 1.2.

Definition 2.6. An algorithm P may require redo iff there exists a
A

PA-coIpatible history 01... an S.t.

3Ti3xIS (x) =M (W Ixl) AC. EOP AT lcw (x)] 2.
1 n La i La n 26

n n

This definition says that starting in the initial system state the

algorithm has produced a system state in which the value recorded in the

"materialized database" for an item x was written by a committed trans-

action--but not the last committed writer of x.

Definition 2.7. An algorithm p. may requidre undo iff there is aI

compatible history a001. . .0 such that .m
01 n

3x[S (x) =M (Wi Jx])AC 
£ OP ] 02.7C i L.

n a b
n n

This definition says that starting from the initial system state, the

algorithm has produced a system state in which the value of some data item

x recorded in the "materialized database" was produced by an uncommitted

@% transaction.

..

" ".""..." .'_ .." . . ..' . .'-. . ". • • . " -'- ", " .- '., , - .. . .. " - '. 4, .'. " . . . . . . . . . .. .-.. . .,.-.. . . . . . . . .,.. . . . . . . . .,.. . . . . . .-. " '." -..-_
".'. " ...'':-. ','-'..; .- ' - - ,-,"'.:"-'- . . ""-.' .. ,," , : . , .- ", , " i' -" ( ' r" ' "", -



.*._* . . , -. .- 7*.-.-.. Wk .-.W. 7...

-208-

2.3 Well-formed Algorithms

In this subsection we develop the notion of a "well-formed algorithm" 6

(wfa). Informally, an algorithm is well-formed if it can, at any time,

respond to "correctly" submitted user (transaction) operations. This means,

for instance, that if an algorithm has produced a system state 0, it must

be able at the next transition to move to a system state 0', reflecting that

an update of a non-terminated transaction was received by the algorithm.

This could be formally stated as follows in the "language" of our model: "

VTi [Ci ,A i  OP L Bo' A (0) [L 0 , = LoW i [xf1+"

Note that our definition of "correct algorithm" made no provision for

this. So, for example, the algorithm, Vi y defined by: VE Z i y() =0 ()"
*silly' silly 0

is correct according to Definition 2.5. (since the only il- compatible

histories starting with 00 are of the form a00...0 and a0  is

resilient by Lemma 2.4). So, sensible algorithms must not only be correct

but well-formed as well.

Definition 2.8. An algorithm WA is weZl-forred iff it satisfies both of
.. .

the following properties: :%

WFAl: For any 1jA-compatible history 0 0 ... , there is some CE A (a
A01- n' An

where L L a. for any T. s.t. C. A., a. , a E{R. [x],whr 0 L 1 1a o n T1i 1 1 OL i ...

n C
Wi x], A., n

14!4

tThat is, a transaction not yet committed or aborted.

The notation "L ,L a " means that L is some (arbitrary) extension of
L with a. tacked at the end; formally, OP =OP U {a. and there isno b P St < b.

Recall that, by definition, there can be at most one read and one write opera--
tion for a given data item in any given transaction. This restriction is only
made for the sake of keeping the notation simpler: the results in this paper
in no way depend on this assumption.".° .



7~ T" "7r, V*7

-209-

WFA2: For any p A-compatible history a-a001...a n  there is a history

O*T T T...r such that Q
1 2* m

(a) Ot is A -compatible, and

(b) L mLa nC., where Ci. Ai OP .

m 2.8

Informally, WFAI says that a wfa can at any time receive and immediately

start processing any read, write or abort operation for a non-terminated.-.'

transaction. WFA2 is a little different because a transaction cannot

necessarily be committed immediately after a commit request is made. The

algorithm for processing transaction operations may have some "house ..

cleaning" to do before it can commit a transaction (e.g., transfer some

values from "volatile buffers" to the "materialized database" or the4.'.

"audit trail"). However, we do require that a wfa be able to commit a (non-

terminated) transaction with finite delay from any system state it has

reached (starting from a

Definition 2.9. The Bet of histories associated with a 1og L, retative to

algoritn 1 A' hAlL), is defined as:

hA(L) faIa-0 1 n is ]A-compatible and L; L). 0
n

Informally, h L) is the set of histories that could be generated by
A

algorithm VA in response to the execution represented by L.
A

2.4 Properties of wfa's

The next theorem shows that wf a's never "get stuck" in processing

operations--i.e., if any (legal) operation is submitted at any time, a wfa

can transform the current system state to one that reflects the fact that it

.. . . . . . ... .. :.:, . .:.. .. . .. , . ,,. .. .,,, , .. .. . . .,. ,. .. : ,-, ... ,-, -... . . . .. . . ,..,. ,



-210-

received and started processing the operation. Recall from the preceding

section that this was the motivation for introducing wfa's.

--- STHEOREM 2. 10. If P1  is8 well-fomed then for any Log L, h (L)9'0
A A

Proof. By induction on L.

Basis. L 7- (the empty log). Since 0 is I coptbe(in fact for any0 ~A cmail

-A-not just well-formed P ! and LG =E by definition of Got we have

A A

Induction Step. Suppose this is true for a log L'. We'll show that it holds

for L= L'oa., where a E{R Ix),W [x),C.,A.1

For a. E =R. [ x (W.i Ix] ,A i, respectively) consider (by induction hypo-

thesis) any a 0 .I..o Eh ALW) and let 0 n+1E W (a n) such that

L L a R i xJ (L aoW.[ x], L a Ai. respectively). C0n~ exists by WFA1.

n1 n n n
Note that L =L' and hence LC = L' 0 R. [x]

nf 0n+I
L'W.W Ix], L'oAi. respectively). So, L L. Thus, 0 a 0 Eh (L).

1 1C 0 01- n+l A
n+ 1

For the remaining case, a. C. consider any az~ a 0 ...0*a Eh ALW)

and let 8=t T .2-T be such that ct6 is P A-compatible and L T L a eC.
m n

B exists by WFA2. Note that L' -L (by inductive hypothesis) and hence
n

C., A i OP Ll(otherwise, L= L'oC. would not be a log). Since L. =L a C.i

and L = L' we have L. =LoC. L. Therefore c8E h (L) and hence

n in

hA (Ly0 2.10

LEMMA 2.11. Let Ii be a wfa and L be any log. Then if

00 E. Eh (L) and at ..T E h (L), CSG CS
0 1' n A 0 1' m A C T

n in

Proof. Immediate from the fact that L. L =L. 01
02.1

n m

LEMMA 2'.12. If L E RC (i.e., L is a recoverable log) then
OP0

CSG sM[TT (L)]
C Com (LO) G

5A0

., !C. . .



-211-

Proof. By definition, for any xED,

S CWx) -E x ) , where Ti -lcw ( x). (2.12.1)

That is, Wi[xJ , CiEOPL and for any j #i such that C., WWIxIEOP

Ix] < W [x]. By definition of log projection, it is easy to see that
LYi

I, C E OPL) and that if W x] ,CjEOP

[xl CoCL~ 0 3 L for some
Co(L)Com()

ji i, then W Ix] < W Ix ). Hence,
T C (L) )-

M1o( CL )]Cx) -4 (c lx]) ( (2.12.2)CI~) MCF I IT C L) ixC.- Com () •

L ,,0

By definition of recoverability, we have

C (Lo) (W ix)) -M CW iIx]) (2.12.3)
Com(Lc;) ±La

From (2.12.1), (2.12.2), (2.12.3) we get

a..,:..

CS Cx) = M1 O ) (LO ) ] (x) , for any xED 0212

The next theorem relates wfa's to recoverable executions.

THEOREM 2.13. If PA  is a Wfa LERC, a0 a... EhA(L),
A0 - n A.'.

a' ~ hCT C)) hen CS -CS0 -"1 m Eh A (TCom (L) W) I a T
n in

Proof. By Lemma 2.12, CS n W M (L7T )(Ln)I M [T CM[ IL)], and
Com(L Co0L

CST wMjTT CLT )I M IT C(I CL)) WCM I T ) .
Com.L_' ) L M o (L)) = Com(L) Mrcom(L)

m mCom (L)
Hence, CS 2.

n m
' C n -in 2.13 i

Informally this theorem says that the committed database state of any

system state reached by a wfa in response to the operations of a recoverable

execution E is the same as the committed database state of a system state

reached by the same wfa in response to execution E' which is the same as

| --

';,,.'.z,'l';.'w. .,. " ., : .r""'.:<.: ,:.-. '-,:.._-,, '-C." " "' ""'.. " . . "



* . N .. N - .<* .s -. -.-

-212-

S,.,

E except that the operations of aborted or uncommitted transactions of E

never happened. Note that the committed database state at any time t is • 0

what we want to reconstruct as the "correct" database state, if a system

failure happens at t.

Now, if the algorithm, in addition to being well-formed, is also

-. '--Sw

correct, we have enough information in "stable storage" to reconstruct that

database state.

In the following section we shall study four algorithms (the four

classes mentioned on Section 1.2) and shall prove that they are correct

and well-formed. From Theorem 2.13 and these anticipated facts we conclude

that any of these four algorithms, coupled with a scheduler that produces

recoverable logs, provides tolerance to the faults under consideration--

that is, transaction and system failures.

-7 -9"

- . **4

....

,...

- --.. .. .,

-. ~ -.- * 2:vA §:§.-..-P.-"-



-213-

3. THE FOUR BASIC ALGORITHMS

3.1 Introduction

In this section we examine in detail the four algorithms introduced

in Section 1.2. First we define these algorithms in the style of the -

previous section; that is, as (non-deterministic) state transition functions.

We define four such functions p P P and IV corresponding,

respectively, to the four algorithms. The functions are defined by listing

"types" of transitions as in ILy82]. Each transition type is characterized

by (a) a set of conditions on states and (b) state transformation rules,

describing how the new state is to be obtained from the old. The idea is

that if a state 0 satisfies the conditions of a transition type of

algorithm VA, and a' is obtained from a as described by the state trans-

formation rules of that transition type, then a' Eli (a).
A

For every one of these four algorithms (state transition functions)

we prove rigorously its correctness, good formation and properties with

respect to redo and undo.

3.2 Algorithm I (both undo and redo)

ALGORITHM 3.1. C' pi (a) iff one of the following is the case:

1.1: [Submit a read operation]

Conditions:

3T.3 x[C ,A. ,Rx] OP I
2. i111 L

o7

• °. .. .0.



-214- -

Transformation rules:

Sol S a

SWICI SWI

L" L.R Ix)
0' a I

1.2: [Submit a write operation] 

Conditions:

3T i3x Ci ,Ai # , i [X] fo OL]. I

Transformation rules:

SC,  S-

SWI' = SWI

' 0 1i

1.3: [Record an update in the "audit trail"]

Conditions:

3Ti.x[Ci ,A. OP AW [x]E OP]I
1 1 L 1 L

Transformation rules:

Sol S ,

SWI = SWI L{(x,M (W [x]),Ti)'
0' 0L i 1

L -L

1.4: IRecord an update in the "materialized database"]

Conditions:

3T 3x I (x,M (W x]) ,T )E SWI
i L i 1

We adopt the convention that the existentially quantified objects in the
conditions bound any free objects in the transformation rules. Hence the
subscript i and the x in Rilx] here, refer to the transaction Ti
and the data item x described by the conditions.

;; .'<'-.....".'-".". .-: .'.-' - " - ." ' -,--. ... - .- .- . .. . . . . . . . . . . . . ."

',, ,-',,,," ,",,' ,'. ,,,,, ', :,,. .',,.' v .' .,, ".. ,_,,,,',Q ' , .\ ,' -.,. ..'.,-,. -,..-.... -. .... -,. --. . ..- ,. .. . . - . , -. ... .



-215-

* Transformation rules:

S Y if y Px

p.* S0 1 (y)

La 1

SWIG M SW!

La La

1.5: [Commit a transaction]

Conditions:

3T [C.DPA 17OP A VW.1I]E OP I (xM (W I) T.)ESwI Jli i L L i 1
La La

Transformation rules:

SWIG= SW!

LG LOC.

1.6: [Abort a transaction]

Conditions

1T 1P 1 O LI
a

Transformation rules

Sol M SC GS

SWIG! -SW!

La LoA.

1.7: [Restore update of aborted transaction in "materialized database"]

Conditions:

3T.3x[A.EOP AS Wx)= (W.[x])]
.1 La a L 1

C Ck



-- - -W W -s, .- , r. -7, T i- W1, W.- 7" 7-- -- -77-717.-

-216- A

Transformulation rules:

~T.xII.EO WT~c if )JA.EO

i . L a

Transformation rules:

so = S

SWI(3 SW! a-{(x,M (OW Ix]),T.)}
0'; L L3i.1

THEOREM 3.2. Algorithm w~i is correct.

Proof. For any P.11compatible history 0001.. .a we'll show, by01 n

induction, that a is resilient, 0<k <n.

Basis: 0 is resilient by Lemma 2.4.

0

Induction Step: Suppose ak is resilient for some k, 0<k <n. By

'P i-compatibility of a 0 a.. we have that 0 E a (0a) Consider each
1- 01- n k-U I k

transition type.

Types 1.1-3 and 6: In all these cases, low0 a lcw a CS 0 a S
kl k k+l k

S =S and SW! M SW! Thus if (Rl) or (R2) holds for any-
k+l k k+l k

x ED in ak it will hold for x in 0k+l By inductive hypothesis then,
k k5l

is resilient.
1~



-217-0

Type 1. 4: Let T.,x be such that S a x W M4 (W[x])9'S Cx) Since
1 a 1 Ok

lea law 'S CS =~ (, -Cy S~ Cy) for all y ED -{x) and
k1k k+3. k k+lk

aW W if CR1) or (R2) holds for y in akit also holds for y

in a By inductive hypothesis then, ak~ is resilient for allk+l 1~

yE D -W. Also, if T.=lcw (x we would have that S Wx = CSal Wx,
1~ ~ +

i.e., CR1) would hold for x in akl The only remaining case is when

T. ilcw Cx) . Let T lwo Cx) , and let p be such that LO La P- C V

That is. T committed in the type 1.5 transition from a to a
9.p-l p

It is easy to see that

T lcw0  x for p~r~k + . (3.2.1)
r

*By the 1.5 conditions, we have that (xML (W Ix]) T) E SWIa Clearly,

*ML (W jx]) =ML (W [xJ) for p~r~k+l since L ~ is a prefix of

r p-1
*all L0 .we claim that

r

CxDML CW jx),T)E SWI 0  for p-l~r~k+l .(3.2.2)

aC rr

*For, suppose not. Then for some q, p<q~k, (x,M (W [xl),T )ESWIa
q-l q-1

*SWI .By inspection of p the transition from a to a can only
a Iq-1 q

q
be of type 1.8 (because that is the only type in which elements of SWI 1

*are deleted). Since A fopL we must have, by the 1.8 conditions, that

* T~~lwQ Cx) but ti cotaitL321,a pqlk hrfr,
q-q-1

* ~(3.2.2) is true and in particular, since T= l x adtu

k+l Lak+l k+l k+l

Hence, CR2) holds for x in ak+~ as needed.

--. . .. . .. .



-218-

Type 1.5: Let T. be the transaction that commits in the transition froml1

a k  to a k+l; i.e. Lak+1 L kC. Consider any x ED. If T I cw k+l (x)

then Icw xk+(x) = lcw Ck(X), CS k+(x) CSk (x). Moreover, S0 k+l = k

and SWIo = SWICk, and thus if (R1) or (R2) holds for x ir k it

also does in T k+. By induction hypothesis, then, ak+1 is resilient

for x. If, on the other hand, Ti = law (x) , certainly W Ix] E OPL
S k+1 Ck

and by the 1.5 conditions, (x,M (Wi Ix]) ,T) ESWI . Since SWI =
L 1 1' 0 0 k1

kk
SWI k and CS Ck+(x) = ML (W ix]) = ML  (Wi1x]), we have (x,CSC  (x),

Ok+ 1  Ok kl

lCw C(x) E SWIk , proving that (R2) holds for x in ak+ I , as needed.
k+1l k+1l~l

Type 1.7: Let T.,x be such that A. EOP and S (x) = CS (x). For
11 L a aC k Ok+ 1 Ok

any yED-{x}, if (R1) or (R2) holds for y in ak it also does in ak . "
byinutiehyoheis he,0 kk l kkl

by inductive hypothesis, then, ak+l is resilient for yED-{xl. Since

CS = CS we also have that S (x) = CS0  (x) and thus (RI) holds
1k+1 k k+1 k+l

for x in ak+l So ak+l is resilient.

Type 1.8: Let T.,x be such that (x,M (W [x]),T )E Swi -SWI .

SL 1 i 0L 0ICW~k~k ' =CS
kk

Since lw = lcw CS+ C5 and S7, = S , if (R1) holds for any
0k+1 k k+1- 0 k

y ED in 0 k it also holds in 0k+l* Also, if (R2) holds for y ED- {x}

in a it holds in 0a , as well. So, let's examine the remaining case,
k k+l'

namely when (R2) holds for x in 0k We then have (x,CS C(X),
k

lcw0  (x)) ESWIk. But (x,CS (x), lcw0 (x)) ESWIk -SWIkl, only if
k k* k k k k+1'

lCw (x) =T i . By the 1.8 conditions, however, either Ai EOP , in which
kk

kk
case T. IKlcw Cx) , or C. E op and T .7 lw (x) , again. Since we

also have that CS = CS and lcw = lcw , we get
k+1 Ok k+1 k

(x,CS (x) ,lcw (x)) E SWI establishing that (R2) holds for x in
k+l k+l k+1

k+*

.

. . . .



7--.7 77

-219-

This concludes the induction step and thereby the proof. a03.2

9...THEOREM 3.3. Algorithm wi may require both redo end undo.

Proof. Consider the history a%0 10203040506 defined by:
0 1 2 4 50

(a is the initial system state)

S =5 SWI =SWI U{ (x 2 ( , 2 ), L0 =L

0 0 a 2 0YI L C

3 3 4 3 3 3

S Wz if ZF(x
04

S (z) SWI =SWI L =L
a5 a, 5Y 40 O 5 a4

19 C if z~x
lx

S =5 SWI =SWI , LC
6 05 005 06 5

it can be readily verified that this is a Ii -compatible history (C0~ goes

to 01 and a~ to 02 by 1.2 transitions, 02 to 03 and 03 to 04

by 1.3 transitions, 04 to a5 by an 1.4, and 05 to 06 by an 1.5

transition),* that S a(Y) g o( M~ ( 0Iy]) COEOL an
0 a6 a06

T0 lcw0 (y) =T2 (showing that Ii may require redo),. and that

6 2

S(x W ) 14L(Wl [Ix) but C IF O (showing that Ij may require

undo).03

-'.



-220-

THEOREM 3.4. Algorithm Op is well-formed.

Proof. Satisfaction of WFAl by p follows immediately from transi-

tion types 1.1,2 and 6. It remains to show that jI satisfies WFA2. Let - -

a=o 0 . . .n be any Hj I-compatible history. Let T. be such that

Ci  A i FOP L

0 L
n

Case 1: If for all W. xj EOP (X,M (W ix),T) ESWI , the 1.5
0 L nLa n
n nconditions are satisfied and we may define T Ej i (0 ) such that

1 I n

L C0 1 Since 01 n 1 is 1-compatible, we have that
n

satisfies WFA2, in this case.

Case 2: Suppose there is some x such that W. [x EOP ,yet
(x ,Mo ("" JT "SI L

S(W [x]) ,Ti )  X SWI0 Let x,X . x be all sucR x's. Because

n n
C., A OP and Wi Xk] EOPL , the conditions for 1.3 transitions are

satisfied forn T ,x l<k m. We may then define T for 0 k~m as N
ik k

follows. Let

T0  on and
n Si

Tk+l Tk

SWI = SWI U {(xk,ML (Wi [Xk]),T i ))Tk+l Tk Tk

L =L , for Ok m
k+l k

Note that T E (T) 0<k<m, by 1.3 transitions. Clearly, for all

Wi[x] OP , (xM (Wix]),T ESWI , and since M (Wilx) =M (WIx]),
SL L 2. T L L 1

0 n 0n n n  n .
Ci'A. a the condition for 1.5 transitions are satisfied at T and

1 2 L m

we may define Tm+l I (T ) such that L = L cC.. Let $T T 2-T 7 *
" l I i T 1 

2m+ 1" "-

ac is clearly pl-compatible and since L. La , L L7 oC. Thus P

m n m+l n
satisfies WFA2 in this case, as well. 034

"-"> - •,";-K,>--....- " - - - " . . - .. .



W. W

-221-

3.3 Algorithm II (undo but no redo)-

AIZOIITkM 3.5. O' EV (0) iff one of the following is the case.

11.1: [Submit a read operation]

Conditions:

3T.3x IC. ,A ,R. Ix] FOPL
.0. 9

Transformation rules:

SO - S
0' 0

SWI = SWI Os 0

L),  -Lo.R x] i"..
-0' 0 1'

11.2: [Submit a write operation]

Conditions:

3T i3x [Ci ,Ai ,W [x FOP I

Transformation rules:

s 

-

s

SWI - SWI

La' a 1i[X

11.3: [Transfer the last committed v.-,u of a data item from the

"materialized database" to the "audit trail"]

Conditions:

3TX[T. - lcw Ix)]"

Transformation rules:

so, SO

00.•



-222-

SWIG, SWI a{(x,ML (W i x]),T) 

II.4: [Overwrite the value of x in the "materialized database" with an

uncoxmnitted value of x]

Conditions:

3Ti3x[Wi Ex]EOP ACi ,A i fOp A
1 1 LO 1 LO

IT.-lcW W(x)(W.[X] < W Ex A (X,CS (x) T)E SWI IJj L i J 0

Transformation rules:

S(y) if y 9x
sC, (Y) 0 :.- .

M (W [x) if y x
Lai

SWI, = SWI

L =L
0' 0O

11.5: ICommit a transaction)

Conditions:

3T i [ C i ,A i FOP AVX IW I x] EOP AL cw (x)T. A
i i. L 1L j

WAx] < W Ix]*S x)=M (W Ix )
L i a L , a

Transformation rules:

So, = S

SWIC , = SWI

LO, =LC i



-223-

11.6: [Abort a transaction]

Conditions:

Transformation rules-

S -S

Z--% SWI a SW!

Lcy LoA. .

11.7: [Restore value of a data item, updated by an aborted transaction, in

the "materialized database"]

Conditions:

3T 3.x[A.,W[ X] E OP LA S (x)WM=N (W i xJ)]

. Transformation rules:

ScyIV iyf = :: ,: where (x,vlcw Wx) ESWI

11.8: [Delete unnecessary information from the "audit trail")

Conditions-

3T 1x IT I0



77 -77 -T 7 7.

-224-

Transformation rules:

swIC, =W aw1 -{f(x,v,T )IV E HU)

THEOREM 3.6. AZgorithr p~i is correct.

Proof. Let 0ol . .0 be a pJ -compatible history. We show, by ~
0 **n p

induction on k, that a is resilient for 0 <k <n.

Basis: By Lemma 2.4, a is resilient.
0

Induction Step: Suppose C is resilient for some 0<k <n. Byp i

compatibility of 00 a a we have that ak Eli (Ok) Consider each

transition type.

Types 11.1-3, and 11.6: In all these cases we have S =S ,and
00

k+1 k
SWI SWI .Also, since L.~ L and exactly the same trans-

0k+1 k 0k41 0k
actions are committed in the two logs (i.e., Com(L. )Com(L a)

0k+1 0k
it fllos tat S~ CS~ Thus, if (Rl) or (R2) hold for x in 0

they also hold for x in 0k1 By induction hypothesis then, 0k~

is resilient.

Type 11.4: Let xE D be the data item such that S (x) WIS C(x). Note
0k+lk

that for all y E D- {x , if (R1) or (R2) hold for y in Gk it also holds

for y in akl By inductive hypothesis then, it suffices to show that

0kl is resilient for x. By the conditions on 11.4-type transitions we

lop k k k k+l k
7 low a low a and CS a CS a Also, by the 11.4-type transf ormation

0k+1 k 0k+1



-225- 0

rules we have SWI0  SW10  Therefore, (x,CS a (x) ,lcw; Wx) ESWI
k+1 k 0k+1 0k+1 0k+10

Thus (R2) holds for x in a
k+l1

Type 11.5: Let T. be the transaction that conmmitted in the transition

from C to a k+l (i.e. T.i is such that L0Y La 60 C.) Consider0
1k+l k

any x ED. There are two cases. .J

Case 1: T. -lcwc Wx. Then W.1I]Cop and by the 11.5-type
0k+1 1 LO

conditions, S (x) =M (W.[x)). Since S S~ and becausea L 1- iC k+l Ck*

M (W ix]) M CW.Ix]) Cas *L is a prefix of L ), it follows
L k+ 1 L k 2 

0

that S Cx)l M I' CW ix]4). Moreover, because T to lowO ~ Wx,
0k~l Lk+1 0~

Cskl Cx) = ML (W jx]). Thus Skl (x) -CS 0  Cx. That is, CR1)
0k+l1

holds for x in a ,~l in this case.

Case 2: T. iflcw, Wx. It is then easy to see that low Cx) -low; (x)
1 k+l 0k+1

and CS Cx) W CS kCx). Since, by the type 11.5 transformation rules,

* .S =S and SWI -SWI ( R1) or CR2) holds for x in ak 1
k+1 k k+1 k

if it holds for x in a By inductive hypothesis, then, a is

k* k+1
resilient.

Type 11.7: Let T.,x satisfy the 11.7 conditions. Since A.E OPL

clearly T. flow W.SneS x (W Ix]) and T #lcwo Cx,

CS Cx) q( S Wx. That is, CR1) is not satisfied for x in G Because
k k

a is resilient, by inductive hypothesis, CR2) must be satisfied for x

in Uk, i.e. Cx, CS, Cx),lcw CW))ESWI .Since by the 11.7 transforma-
kkk k

tion ruies L0  L ,we have that lI mlcW and CS -CS
.q..k+1 kc k+1 k k+1



-226-

Also, by the same transformation rules, SWI =SWI .Thus

k~l k

(x'CS Wx) lcW W SWI0  proving that (R2) holds for x in V

i.e. a is resilient for x. For all yED-{x), it is easy

to see that CR1) or CR2) holds for y in ak if it does in a By @

inductive hypothesis then Gk~ is resilient for y ED -{fx}, as well.

- . . 4

Type 11.8: Let T. ,x satisfy the conditions of 11.8 transition type.

Clearly, for any y ED -{W, if (RI) or (R2) holds for y in a it also
A k

*holds in a and by inductive hypothesis then, ak is resilient for

*such y. Also if CR1) is satisfied for x in a~ ki will be satisfied

in 0 The only case of concern then, is if CR2) is satisfied for x
k+l'

in a Then Cx,CS CW) lcw W ()E SWI .By the 11.8 conditions,
k k k

T. gelcW CW, hence Cx,CS Wx)IcW CxW E SWI .Also, because
1 k 0k 0

k 
0

k+l

L =L ,lcw =lcw and CS CS .Therefore,

0k+l k k+l k C

CxCS Wx, lcW Cx) E SWI establishing that CR2) holds for x
0k+l 0k+l 0k+l

in 0k* So a is resilient for x, too.
k~l* k+l

This concludes the Induction Step and thereby the proof.a

ud.THEOREM 3. 7. A Zgori Ot1Wp I never requires redo but may require

Proof. Let 0 C .- a n be a Ii -compatible history, and let T. ,x

be such that S Cx W M L (W. I) and C.i E OP L To prove that
n

n n
never requires redo, it suffices to show that T. =lcw (x) . Loet k n

n
be such that S Cx V ML (W. [x]) and S~ Cx ML (W. [xD for

L r
k-l L'k-l r

gk~r4n (3.7.1). (If no such k exists, then S Cx W M L CW 01I)
n a

n
and To lcw Wx, and we are done.) By inspection of Pi, it is clear

C
n



M.-7T

-227-

that the transition from 0 klto a0I can only be of type 11.4. Let

T a lew (x) (3.7.2). By the conditions of 11.4 transition type we
j0 k

have that W ix] < N Ix] (3.7.3). Also, by the same conditions
) L i

0k- 1
we have that C. ROP and hence C. 17P (recall that the transition

from ak- to ak is of type 11.4, so T. can't commit during that
k-l k

transition). Because, by assumption, C. COP ,we must have that for
i L

n
some p, k<p~n, L0 M L oC. (3.7.4).

Claim: For any qq'p. k<q-4n, lcw Wx icW Wx.o CY
q q-1

Proof (of the Claim): By definition of lcwt lcw Wx lcW (x,

q q-1
only if L0  L0  0C and N [x]E OP ,i.e. only if in the transition

q a- s s L0

from a0- to a q a transaction T , which contains a write operation on

x, commits. So we only need to consider such transitions which, as can

be easily seen can only be of type 5. Let lcw, (x) -T .By the type.
q- r

11.5 conditions, we must have that if W [xl < W Ix] then
r L s

q- 1
S Cx) = L (W Ix]) . But since q ifp, T 9IT. and this could not be
0q-1 -

the case because, by (3.7.1) S (x) M (W. [x] for all k~r<-n and
r L

La
r

*in particular for r =q -1 (recall that k <q <n). Therefore, we must

have that W lx) < W Ix] and since L. LO W lx] < W lx].
s La r q- q- Ld r

q-l qq-
Hence lcw Cx) W T sand therefore lcw aCx) =T r lcw a x). Cli

* q q q-1

Now, by using (3.7.2), the Claim, and induction on q for k <q <p,

we get that icw Wx T T.. By (3.7.4) C C EOP L and by (3.7.3) (and

p-i p

the fact that L., L )we have that low Wx -T .By using this,

p k-i p



-228-

the Claim and induction on q for p<q~n, we get that lcw0  x) =T i

n
as wanted.

To show that 1II may require undo, consider the history 00010203

defined as follows:

(a is the initial system state)0

S =S *SWI =SWI O, L Wx]( is0 I 0 sae.. 0 1
S1 s0 .

S = , SWI SWIU0 L{ Ll
2 1 02 1 So { x ),T2), L1 =

g( ) if y31x

S (y) - , sw3 SWI a2L LO
03 ) f x 0 3 02

It can be easily checked that this is a jii-compatible history (Co goes
0P

to 01  by means of a type 11.2 transition, 0I  to 02 by means of a
type 11.3 transition, and 02 to 03 by means of a type 11.4 transition), -

and that S = a= M (W1[x]), while CIROPL (no type 50 3  0 3

3 3
transitions). 00010203 shows that PII may require undo. D37

THEOREM 3.8. AZgorithm II is weZZ-for.ed.

Proof. That II satisfies WFAl follows directly from transition

types 11.1,2 and 6. We proceed to show that PII satisfies WFA2. Con-

sider any uii-compatible history O0 . .. 0 Let T. be any trans-
n" 1 n'

action such that Ai, C FOP
1 i L

n
Case 1: If, moreover, for all W. Ix] E OP such that Wi x] < W [x],

n n i--

where T.- lcw (x), it is the case that S (x) = M (W 1x]), the 11.5
n n nO

n

-" , .., ., .., .: .-: .-.. .. .......7 %.



-229-

conditions are satisfied and we may define T E 1ji( ) by a type 11.5
1 1 n 

transit'ion. Taking B-t• we have that is PiI-compatible and

L - L nCi proving that WFA2 holds, in this case.
n

Case 2: Now suppose that there exists some xE D such that W [x] <L W i 1I,

n
where T. = lcw x), yet S (x) ML  (W ix]) (3.8.1). Let xl•X 2 . mn n a n

be aZZ such x's. Define history Tl1 2 ... t 2 m1  as follows:

Let . 0 O and denote TJ() =lcw (xk), for lkzm."

Let

S S
tk tki

SWI k SWI U {(xk •ML (W Ix ]) , T j  )}
T TkUi 1k -

k L k l a j~k

L for 14k<m
*k k-i

It is easy to see that the transition from T to Tk is of type 11.3

and at each step the conditions are enabled. So the history C a ... n0 T I T __

is Pii-compatible. Also, it can be easily verified that (xkCST (x k)"
m

T( ESWIm and that Tj 0 ) =icwm (xk) ' for lk~m. By choice of

the xk's, and the fact that L. = L we get that Wj( xk <LT Wi 1xk],
m n

m
l(k(m (see (3.8.1)). Therefore in T the conditions for II.4

transitions are enabled for T. and the Xk's. So, we let

(Tr n if Yixk
.... (W.Exkk- i

m+k-l

SWI - SWI ,L-rn+k L (+k-l 1 
.:

T Tm.k . .• 
°



-230-

L T , Tmkl for 1<k~m

It can be seen that 000a..T T2 .T 2  is 'P -compatible, that

lcw x) TWxk an S;T m *x ( )xk O ) <L T Wix.] ad S (xk) ML T (Wi xk]
2m 2m 

1 2m

for l~k <m. Since the swere the only data items for which the

11.5 conditions were violated on a and are no longer violated on T
n2m

we can define a type 11.5 transition from T m to " m So that

S
T 2m~l T2m

SWI SWI ,and
2xn-s 2m

L =L oC

2m+l 2m

Let B=T T .. T . We have proved that ctB is i -compatible and
12- 2m+l*I

since L T L a we also have that L T L; C. finally proving
2m 0n 2m+l n

that WFA2 holds in this case, too.
3.8

3.4 Algorithm III (no undo but redo)

ALGORITHM 3. 9. aI E i (a) iff one of the following is the case:
'/ III

111.1: [Submit a read operation]

Conditions:

i i i L0

Transformation rules:

swI0Y, sWIc7 -

L L oR.[xJ



.L .-....- ,
- 7

*Yi -231-

111.2: [Submit a write operation]

Conditions:

3T.3x[Ci ,Ai ,Wi [xJOP I

Transformation rules:

.ii.' 0' 0 s

SWIo, SWI

La. LoWi [xJ -

111.3: [Record an uncommitted update to "audit trail"--create "intention

list"t]

Conditions:

3T.3x[Ci ,A FOPL AW [x] EOP
0

Transformation rules:

-. '-. S , = S"- ,

SWI0 , = SWI L{ (X,M (Wi [xJ),T i )-
CF aL 1 1

La LO,4. 0c' 0 c-'

111.4: [Commit a transaction after its "intention list" is in the audit trail]

Conditions:

i 1 L L L 1 1 0

in the earliest description of a class III algorithm (that we know of)
[LS76] the data structure used in the audit trail is called the "intention
list". The term derives from the fact that a transaction creates a list of

the updates it "intends" to perform, writes this list in stable storage
"* ."(the "audit trail") and then commits later the intentions list is carried

out and the updates recorded in the materialized database.

.... .- .. .
." . . . . .. . ..... . ... -*. , . ... ° . V -.. *. . . ~ , ", .-.



-232-

Transformation rules:

0' 0

SWIC= SWI .

LO LOOC

111.5: [Move updates of a committed transaction from the "audit trail"

to the "materialized database", one at a time--i.e. start carrying

out "intentions list"]

Conditions:

2TixT lcw (X) A (X, M (W [X]),T. E SWI

Trans formation rules:

S (Y) if y 3ex

M c ~~~(W [XI) if yx

SWIC; =w aW

* 111.6: [Delete "intentions list" of transaction T. once it has been

carried out or T. aborted]

Conditions:

IT (.EOLAW x] E OPL [S0 ax) ML (W. [x]) v A. E op

Transformation rules:6

*SWI SWI -{(x,ML (W [ x]),T.) Ix ED}

C; ' L a



-233- -

111.7: [Abort a transaction)

Conditions: :

% 3T. Cc.,A. ROP
La

Transformation rules:0

SWIG,=SI

La L LGA. 30

THEOREM 3. 10. AtIgorithmn ji is correct.

Proof. Let a a .. a be ai p cmailhstr.We'll show,

by induction on k, that a. is resilient for 01<k<n.

Basis: 00 is resilient, by Lenmma 2.4.

Induction Step: Suppose ak is resilient for some 0<k <n. By j

compatibility of a0a * 0n we have that a E v ( Consider the
0 -nk+l III ak)

*type of transition from a~ to a

Types 111.1-3 and 7: In all these cases we have that lcw, = lcw0 . -

a', C a Sl a a-and SWI. =D SWI.. Thus, if CR1) or (R2) holds

for some x ED in ak it also holds for x in a By induction

hypothesis then a is resilient in this case.
k+l

0Type 111.4: Let T. be the transaction that commits in the transition

f rom C to akl i.e. Lal L LoCi Consider any x ED.

Case 1: ],cw (x)y' T..* Then lcw Cx)=1lcw Wx, CS (x) CS Wx
a~ 1 k+l k k+lk

and if CR1) or (R2) holds for x in ak it also holds for x in al

----------



-234-

(for (RS) note that S k and for (2) that SWI k+1 , k-

by the II.4 transformation rules). By induction hypothesis then, a

is resilient for x, in this case

Case 2: lcw (x) = T.. Then there must exist some W. [x] EOP 7
a 1 ~ L 0

and by the III.4 conditions, cx,M (W. i[x]) ,T) ESWIk. Since

kk
lcw l(x) = Ti, CS (x) = M (W [x]) = M (W i[x]). By the III.4

k1 ~ LO 1 LO ik+1 0k+1 k

transformation rules, SWI+ = SWIk and therefore, (x,CS (x),
k+1 k 0k+j

lcw x)) E SWI establishing that (R2) holds for x in ak+l . Thus
0k+l 0k+l

Ck+l is resilient for x in this case, as well.

Type 111.5: Let T.,x be such that Sk (x) = ML (W.ix]) S (x).
k+l LO

Consider any yED.

Case 1: y #x. Then S (y) S (y) and SWI = SWI by the
k+l k k+l k

111.5 transformation rules. Since also lcw = lcw and
a k+l ak

CS CSk. it follows that if (Rl) or (R2) holds for y on ak  it
0k+l k

also holds for y in 0a . By induction hypothesis then, a is
k+l* ~

resilient for y, in this case.

Case 2: y=x. Then, by the 111.5 conditions, T.i = WCX) and
1 k

(xM (W i x ] ) ,T) ESWI . Since lcw = lcwk, CS x) = M (W [x])
k* a 0  k+l 0k k+l ak~' CSkk+

ML (W i[x]) and SWI = SWIg k  we have that (x,CS x),

lcw Wk+(x) ) E SWI establishing that (R2) holds for x in ak+ -
0k+7 0 k+l

Thus 0 is resilient for x=y in this case, also.
.k+ 1I-

.. ...... ".......5... ......... .. ..... .

• , -." .. -.- • - ,. " . , .- . , . . _ : .. ,,- .,,',,.-,-. ' ,,% ,," ,. -, . AS . ... -. - A -. 'S % A ... -.-. . -. .- .
-



-235-

Type 111.6: Let T. be such that for all W. [x] EOP

CxML (WI x]) ,T. )E SWI 0  - SWIok . It is clear that if (RI) holds for
i a.

a~ Ck k+l'
k

any xED in a it also holds for x in 0 since CS =CS
~*k k+l' Wka

and S S . So, suppose that (R2) holds for x in ak. That is, .
Ic+l k*

(x,CS W IcwoklW)) ESWI. If T. 3 lcw 0(x) then (x,CS0 x),
ok k k  k

l (x)) E swi and since CS C 0  and lw lcw , (R2)
kk+l ak+l k CYk+l ak

holds for x in a+, also. If T. = loWk(x), A. FOP and by the
k+l' 1 Lk

111.6 conditions, we must have that S0 (x) = M (W. [x]) = CS (x).
kk La k2

0k
Because Skl S0  and CS CS we get S x) =CS (X)

k+l k kl k k+l 'k+l

and thus (RI) holds for x in a+. Therefore, in either case
k+l1

(T = lcw x) or T. lcw x)) a is resilient for x.
a k ~ a C k+l

This completes the induction step and thereby the proof. 0
3.10

THEOREM 3.11. AZgoritim pI never require8 undo but may require

redo.

Proof. Let 0001.. .0 be any 1l -compatible history. Consider
S n (xIII '

any x ED and let L x (W N.x]) To prove that P never ~.Y %

n L
requires undo, it suffices to show that C. EOP . Indeed, let j <n

LO
n

be such that S (x) ML  (W i[x]) and for j~k~n, S Cx) = XI (x]).
0- I k 0a

n n-
If no such j exists, S X) ML (W [x  and C EOP , and we are

n La 0a
n n

donL. By inspection of the transition rules of V we have that the

transition from i0 to o. can only be of type 111.5 (it's the only

type izn which the S-component of the system state changes). By the 111.5

conditions Tx Wlcw ) and thus C. E OP Surely then C. EOPcodtosT 0.wj~ 1 LO_ 1 n"'"'..L''

(since L. _ La ), as required.
n J-1



"°.- 236-

To see that lJI1 may require redo, consider the history

0 a 3  defined as follows: "

( is the initial system state)
0

S S SWI SWI L L OW[x]
1 0 1 0 1 U

S = , SWl SWI U {(x,M (W [x]) T) L, = L$.02 0O1 0= L102 0O
22 1 La C

S =S ' SWI SWIo, L L cC A
0 0 0 1".a3 a2 3 2 3 2

It can be readily verified that this is a P l1 -compatible history (oo

goes to 01 by a 111.2 transition, 01 to 02 by a 111.3 transition

and 02 to 03 by a III.4 transition), that S x) ) = M (W x ) ,
3 -O

3
C0 E O P  ,yet lcw (X) = TI  TO. 00010203 shows that PJlI may require

3  3T' T

redo. 03 -

THEOEM 3.12. Algorithm ii is weZZ-formed.

Proof. By transition types 111.1,2 and 7 it is immediate that I-

satisfies WFAI. We show that it also satisfies WFA2. Let a=00 a...O0- ,- n

be any Li-compatible history. Consider any T. such that C.S'...II 1 1

A i LOPL
n

Case 1: If for all W[x] EOP , (x,M (Wi[xj),T) ESWI , the 111.4
1 L 1

n n
conditions are satisfied and we may define TI Eli (O ) such that

L = L CC.. Since 0 0 ...0 T is jii -compatible we have that l.
T 0 0 01* nlI III III

* n
satisfies WFA2, in this case.

V. .- 
"

Case 2: Suppose for some W. [x iEOP , (X,M (W ix]),T i ) jSWI (3.12.1).
-0 0 n

n n
Let x. ... ,x be all such xED. Since C., A. jOPLO  and1m I i- 1

n



-237-

W. x] EOP the 111.3 conditions are enabled for T. and any xk k14"m,

so we may define Tk , O k<m as follows:

10 - n  and I
S -S
tk+1l

SWIT SWI U{(xkML (W [xk]) Ti)li and

LTk+l = LTk, for O~k<m .

Since xI .... ,x were all the data items xED such that (3.12.1) is true

and clearly, Ci , Ai  OPL and (XkML (Wi[xk]),Ti) ESWIT , the 111.4
T T m "''mm i::i

conditions are satisfied in Tm and we may thus define T EI p (T) bym m+l LS m

a 111.4 transition. If 8=T T2 . Tm+I we have that cxB is Viii-compatible

and L = L oC C. Thus III satisfies WFA2 in this case also. 3.12
Tm+l n

3.5 Algorithm IV (neither undo nor redo)

ALGORITHM 3.13. a' Eli (0) if one of the following is the case:
IV

2. IV.l: [Submit a read operation]

Conditions: -

3T. 3x ICi ,Ai ,R Ix] f OP

Transformation rules:

so, "=S 0 "

SWI' SWI a

LOI L oR.Ix]
r. 0-' '" "

. ro d , "% , . ' + , . . . . . . . . b + .. . . . . . . . . . , . . . . . . , . . . . ' , ... ,



-238-

IV.2: [Submit a write operation]

Cozdditions: 0
3T~~~~ 3xC A. W. •x O

Transformation rules:

SWI = SWI

' 0

Lag LaoWi [x]"

IV.3: [Record a submitted update on the "audit trail"]

Conditions:

3Ti3x[Ci ,A JOP AWi [X] E OP I
1 11 L 1

Transformation rules:

S = a
0' 0

SWI 0 . = SWI C U{(X,M L(W i [x]),T i )}

0o L a

IV.4: [Commit T. and install its updates in the "materialized database"]

Conditions:

3T.I[Ci,Ai P AVxED[Wi[x] OP *(X,M (W.[x]),T) ESW ]] .-
1 L 1 L L 1 1

Transformation rules:

M (W iX]), if W[x] EOP AlCW (x) T. W x] < W [x]
L O i OL 0 j J L i

SS (W) otherwise
- "-*"0

;.5.

. 5: . *: . -5 * *. .: : . . - : .- - . . . : . . . : . " ,- . • . : ... .. -. . ..* S -* . . . .-- .- . .- , - . - - : . ,



-239-

SWIOS = SWIO

La -LooC.

IV.5: [Delete unnecessary information from the "audit trail"]

* . Conditions:

BT [C E OP VA EOP3
i i La i La

Transition rules:

S -S

SWIC1- SWI -(x~vT Ilx ED,v EHU}

IV.6: [Abort transaction T]

Conditions:

-. 3T[c I 7O

0

Trans formation rules:

SWIY SWI

Y LC0 Ai 03.13

THEOREM 3.14. AlIgori thmn i IVis correct.

Proof. Let C01. a a be a jj -comnpatible history. We'll show, by

induction, that aY is resilient for 04i <n. In fact, we'll show some-

thing even stronger, namely that each 0. satisfies condition (Rl) for all

x ED.



-~~~ 7-. 7.. .

-240-

Basis: By the proof of Lemma 2.4, 00 satisfies (Ri).

0~

Induction Step: Let 0(k<n and suppose ak satisfies (Ri). Since

a a is j1 compatib-j we know ak~ Eli4 (ak). We'll show that ak~

satisfies CR1) by considering each type of transition defined by ~-

Types IV.l-3, IV.5-6: In all these cases, L. L ,and the same
k+l 0k

transactions are committed in both logs (Com(L )=ComCL )). Therefore
0k+l 0k

Cs CS. Also, in all these cases S . By inductive
k+l k k+l k

hypothesis, S =Cs . Hence, S CS as wanted.
Ck 0k k+l Gk+l

-T-peIV4:Let T. be the transaction that was committed in the transition

from a k to a k+l ; i.e. T.i is such that La L a*C.i. Consider any
1 k+l 0k 1

xE D. We want to show that S x) =CS Wx. We distinguish two cases:
klk+l -

Case 1: S0  (x) #S Cx). By the transformation rules we have that

S (x) =ML (W Ix)) (3.14.1). Also, we claim that T. low Wx.
k~ 1 1 k+l

For, take any TV. tLu, such that C9., W [x E OP .Obviously, by the
L

1 -

transformatiox. rules, C, W i x] EOP .Let T. low (x). By definition

of low, either j= k, or W [Ix <L Wjjx3. Because < extends
z. L L

k a k+l
< (L C L )and by the transformation rules W IX] < W. Ix] we
L; a- L0k k+lk

have, by transitivity of < ,that W 1Ix] W 1x). Moreover,
L 9. L i
0k+l 0k+l

SC. C OP L and by definition of low, low (x) T..* But then,

- , 
0k+l k1

CS Cx) =ML (W. [x) (3.14.2). From (3.14.1), (3.14.2) and the
0k~l k+l

obvious fact that ML (W. [xl) =M (W. 1x]) we conclude that

S (x) =CS 0  (x), as desired.
0k+l l



-241-

Case 2: %0  Wx S0 (X) (3.14.3). We claim that in this case T. i7
k+1 Ii

lcW0 Wx. This is because, by the transformation rules this case will

happen if either N [x] FOP and hence W. 1I FOPorW1 < XI
SL 0  1 L L .x< ~

Ok k+l k
and hence W 1I < W x4 where T.2 lcw (x. In both cases, clearly

i L
0k+ 1

T. 7flcW~ Wx. But then, sinc le S k lcWk Wx and

This with (3.14.3) and (3.14.4) yield the desired S (x) =Cs Wx.
0k+1 0k+l

This concludes the induction step and thereby the proof. a31

THEOREM 3.15. Algoritlvn p never requ~ires redo or urndo.

Proof. In 3.14 we actually proved that for all 1P -compatible
L

histories a 0 1 .. C an for all O~k~n all xED, S0 aCx) CS~ CYx).
nk k

Definitions 2.6 and 2.7 then, immediately yield the theorem.031

THEOREM 3.16. Algorithm ii I is weZl-formed.

* Proof. WFA1 is immediate from transition types IV.1,2 and 6.

So we only need to show that Ij satisfies WFA2. Let

otCmC0 Cr 1- an be any 1j I- compatible history and consider any T. such that

C1 ,l A i OP
i La

n

Case 1: If it is also the case that for all W. [Xl EOP
a La

n

(x,M (W [x]) ,T.)E SWI the conditions of type IVA4 transitions are
L i C

enabled and so we may define 11 Eli1 (a) such that T1  is obtained from

1 IV n

nn

verifying that P satisfies WFA2, in this case.

IV 
7

-*. 7 7 * *. 7



-242-

Case 2: Suppose, on the other hand, that for some xED, W [x] EOP
1 L

a
n

but (x, L (W [x]),T i) zSWI0  Let x,... ,x ED be aZZ such x's.-.
.. Sa n

n
Then define B= 1T2 ...Tin+ 1 where

SWIT =SWI U{lx ,M (W ilx I )1 .

n

SW = SWI U{(x ,M (W Ix ]),T i)1 for 2(k (m,
W k aWk-l k LOk- i k i

ak-i k k-l

%, and

L T LT OCi
xn+l m

Clearly, T EIV (a ) and T E.i (T _ ) for 2<k<m by means of type
1 IV n k IV k-i

IV.3 transitions. Note that W iIx I EL , Ci, AiEOP and W ilx )OP LE -
n 0a

n k-i
Ci, A IOP for 2 k4m, so that such transitions are enabled. Also,

m T k-

T E CIV (Tm ) by means of a type IV.4 transition. Note that such a

transition is now enabled, as Ci, Ai OPLT and (x,h (W i[x ]),Ti ) ESWIi T m
m m .

for all W. x] E OP So, in this case too, we have that ca is P
1 L I

T

compatible and L = L oC., as wanted. a
m+l n 1 3.16

.,~

;€... ., v ..,. ,,,. . . • . " ." - ' ", . -. . , > ,. . - . . . . . T



-243-

4. DISTRIBUTED DATABASE SYSTEMS

4.1 Introduction

In this section we extend our model to describe certain aspects of

reliable processing of operations in the context of a distributed database

system. Speaking in broad terms, a distributed database system consists of

a number of independent processors, called sites, each of which stores one

or more data items. Transactions wishing to access the data items submit

operations to the appropriate sites (usually through a scheduler). These

operations are processed locally (independently of what happens at other

sites). Eventually each transaction must be terminated by either becoming

committed, or aborting. This decision is reached by consensus of the sites

_: at which the transaction submitted operations: if all these sites agree

*. to commit it, the transaction is globally committed; if even one site

dissents, the transaction must be globally aborted.

This consensus voting scheme is called atomic cormvitment and an algo-

rithm that implements it is called an atomic c mnitment aZgorithm (protocol).

Several such algorithms have been proposed, for example two-phase commit

([LS761, [G78]), three-phase commit ([S82]), the SDD-l (four-phase) commit

algorithm ([HS80]) among others.

Atomic commitment is a coordination problem and, therefore, inherently ii
involves communication among the participating (voting) sites. Because

sites are independent processors (and may, therefore, fail independently)

and because the medium of inter-site communication is also subject to a

variety of failures, there are new kinds of fault tolerance that we might

like a distributed database system to provide. Indeed, the various atomic

- .-. ... ' .-

f :i -- ~~~~~~~~~....-. _..._..- . -. -. ...... .. . .. ....-... -..- .. . -' . . . ... ....- - - : - - - ? - --- :;-.'- •:< .:: :



-244-

commitment algorithms mentioned above have different properties of fault

tolerance with respect to these new types of failures. Some interesting 0i

work on this question can be found in [S82].

Description of atomic commitment algorithms and proofs of their

fault tolerance properties is beyond the scope of the present paper. We V1

therefore deliberately extend our model in a way that factors out these -

questions. (Other extensions, with these questions in mind, are possible

and will be sketched in the next section.) :O0

Rather, we are interested in understanding how to build reliable

distributed algorithms for processing database operations out of reliable

centralized such algorithms, as described in Sections 2 and 3, under the O

assumptions that the communication medium does not fail and that failures

of sites are detected by other sites. As we shall see, it is possible to '

build "heterogeneous" distributed algorithms--in the sense that different "

sites may use different centralized algorithms.

Our primary goal is the description of the conditions under which a

site should vote to commit or abort a transaction in an atomic commitment

protocol. This will be done by giving a predicate VOTE(O,Tk) where 01

is the (local) system state at site i and T is a transaction. Site i,
k

i
if asked to vote on transaction T while at state 0i , votes to commit .

k

iff VOTE(O ,Tk) is true.

4.2 Extension of the Model

A dist-ibuted database design is a tripe (t,D,str), where t E 3N is

the number of sites, D is the set of data items and str: D-{l,... ,t} is .".

a functiOn that maps each data item to the site at which it is stored. Note

that making str a (single-valued) function commits us to databases with no

-ZI



• -.

-245-

data replication, as each data item in D is stored at exactly one site.t

Throughout this section we keep the distributed database design fixed.

A globaZ system state, 0, (for the given distributed database design)

is a triple 0= (S ,SWI ,L,), where the three components have the same

meaning as the components of a system state as defined in Section 2. E

denotes the set of global system states.

A local system state at site i, ai is a triple a (S ,LSWI .L ) 6

where the three components are restricted to data items stored at site i.
- i Di Di"m

Thus, if we define D ={xEDlstr(x) =i}, S : - HU, SWI C D XHUX T

and L is a log such that if Rk[x] EOPL i or Wk [x] EOP La, xED ,

- denotes the set of local system states at site i.

Given a global system state OEE, we may define a unique local system

state 0 E.i , for every site i as follows: S S ID,
a

SWI {(x,vT ) ESWI IxEDi}, and L is the restriction of the partial

order L to the domain OPL {8EOPL Dake {Ck ,,[x],Wk[X] IxEDi}}.

Given a vector of system states (aI ,...,a t ) where 0 E Z, we may

t t
define a global system state 0, as follows: = U S., SW10  U s 1WI

i=l C i=l C
t

and L0  is any log with domain OP U OP such that L D L
LO i~l o 0for every 1 <i <t. Note that this does not uniquely define 0, as there A

may be several logs with the wanted property.

'According to one school of distributed database researchers it is the job

* of the transaction manager (not of the scheduler or data manager) to ensure
that, in replicated databases, all copies of a data item be kept consistent.
This view is explicitly taken, for example, in [KP8I]. As ours is
essentially a model at the data manager level, this view would justify our
assumptfbn. We hope to explore the complications of data replication in
in another paper.

ALI

• - . , ..--. 1



* . . -. .. .°

-246-

Throughout this section we adopt the convention that local system

* states 0 and global system state 0 are related as above

A distributed aZgorithm (for processing database operations) is a

pair (X DY ) where XV: Z -2 and YD: 1. -2 Intuitively the distributed

*. algorithm changes the global system state to a new one by one application of

* either X or YD to the "current" system state. The reason we broke the

state transition function into two components is that X corresponds to

changes of the global state incurred by local processing at the sites,

while y corresponds to changes of the global state incurred by the

coordinated activity of aborting or committing a transaction--i.e. YD

simulates (in a very crude way) the activity of atomic commitment.

More formally, we requireof a distributed algorithm (X0, Y0) that:
.D "'D

(DAl) If a' EX (O) then for all transactions T C, EOP C EOP
V k L k L C I

and AJE OPL .kEOPL , and
"'" 0

. (DA2) If a' E Y() then for some transaction Tk , either L, = L Ck

or L., = LoaA k.

A gZobal history is a sequence a a2... a E F*. A global history
12 n

0102..0 is (X..,D Y)-compatible iff a l E(a i ) or a i+ Ey (oi) for1 n vVi. i)iU

l(i<n. For a log L we define h (L) A {=Oo ...anla is (X

compatible and L =L ). We may define resiZient global system states,
n

and the concepts of the last committed writer of a data item x in a global

system state 0, denoted lcw (x), and of the committed database state in a
0

global system state 0. denoted CS, exactly as in Section 2. We shall

not duplicate these definitions here..

tNote however, that for these definitions to be immediately transferable in

our new setting, it is crucial that there be no replicated data items. In
fact, one concern in studying data replication will be to find conditions on
the algorithms such that lcw and CS are always well-defined.

. .. . . . ..:_ . .

-. . .... .. .....-. . . •......... .. .... . . .. . .



-247-

4.3 Building Reliable Distributed Algorithms

We are going to build reliable distributed algorithms on the basis of

correct and well-defined centralized algorithms, as defined in Section 2

(and examples of which were analyzed in Section 3). Intuitively, each

.. site uses a (centralized) algorithm to process the data operations sub-

-. mitted to it. Eventually transactions must become globally committed or

globally aborted.

Let A. be the (centralized) algorithm on which is based the data

processing algorithm of site i. We assume that UA  is correct (see

Definition 2.5) and well-formed (see Definition 2.8).
.1-- i i "-

Let a EE and T be a transaction. We define, for each site i,
k

a predicate VOTE. , as follows:

Definition 4.1. VOTE (C',T) *3 1 E 1 r i"ei (O1) AL i=L ionj. a
1 .k A. 1 a' K 4.1

Note that, by the fact that PA is well-formed, for any transaction
A.

Tk there exist states a that render VOTE. (a ,Tk) true.

The predicate VOTE. is used by site i to decide how to vote on a1]

transaction T if it is asked to participate in an atomic commitment
k -

-. protocol. If site i is at state 0 when that happens, it votes to

commit Tk , if VOTE. (e',Tk) is true, and to abort Tk, otherwise. In-
i kk

tuitively, VOTEi (01 ,Tk ) is true if the centralized algorithm PA. could

commit T in the next state transition from C 1A.

we may now define functions 2: and Y: -2 as follows:

D: YD-



-248-

Definition 4.2. O' E D(o) iff

[o'iE pA. (01) AVTk HC k EOPL Ck E op A (AkEOPLa, A kEc )11

v 0'i= i , for li~t

E0
' E Yv(o) iff

i i-t i

a' Eiw (O ) A3T [(A VOTECO( Tk) A =LoCk)
A. k i k 0

t
v (- A VOTEi(O ,Tk) ALo, =L oAk)], for all li~k.*i=l "00[;~2

4.2

Informally, this definition says that a global system state transition

by ) occurs if one or more sites change their local system state due to

local processing. A transition by ^YD occurs when a transaction is

globally committed or aborted. If eve'j site i is at a local system

state Ci  at which it can commit transaction T in the next step by its
k

local (centralized) algorithm (i.e., VOTE. (0 ,Tk) is true for li<t),

then Tk is globally committed. Otherwise Tk .s globally aborted.
. -

Now we must show that a distributed algorithm (X, Y), constructed

as above is correct. Let C0 E. be the initial global system state and
i z i i S: ...

00 EE be the initial local system state at site i. 0 and 0 are
00 0

resilient (see Lemma 2.4).

THEOREM 4.3. Let (X DoY) be constructed as in Definition 4.2 and

let 001... n be a (XOYD)-compatible history. Then a is resilient.

Proof. We show, by induction on i, that C. is resilient, 0<i <n.

Basis: As we remarked, 00 is resilient. O02- '

Z<-
%-2<



-7' TT ~ -. .- -. -7--

-249- .

Induction Step: Suppose a. is resilient for some I<j <n. We'll show

that a0+ is also reslient. By inspection of Definition 4.2 it is easy

to see that l1 Ulcw, Cs CS0  and SW10  SWI0 ,except
0.O 0 0.a0

j+ )+ j+ j+l

in case 0 E y (a. and L L 0 S for scme transactionTk
j~l Vj+l

Except for this case then, 0 is resilient by inductive hypothesis.
j+l

Let's now examine the remaining case. By 4.2, we must have that

VOTE.i (G.,T k) is true for every I<i 4t. Thus, by Definition 4.2 there

exist 0.1 E ij (0.) such that L Ck= for I<i 4t. By
j+l A. j a

1 CYj+l j+1

assumption the Pi 's are correct and since by inductive hypothesis, a.
A1 .)

and hence the a's are resilient, it follows that the a. 's+ ar
sJr

resilient for 1 i <t. Hence a. is resilient.oj+l 4.3

* We can also prove the analogue of Theorem 2.13 for a distributed

database. We shall state the theorem in this new setting but will not

give the proof as it is similar to that of 2.13.

THEOREM 4.4. Let ( Y be a distrXuted aZgorithm defined as in

- .4.2, LE RC, a a..a Eh (L) and a~. T T E hV~~ ( L (L)). Then

CS0 CS . 04
4.n m



-250- -

5. FINAL REMARKS

In this paper we developed a model of a database system for the purpose '

of studying formally the reliable processing of operations in such a system.

Our motivation for doing so is that in most of the work on database _-2

reliability we are familiar with, notions such as "correct algorithm",

"resilient database", "transaction redo", "transaction undo" etc. are used

loosely and defined in the limited context of particular database systems

under development.

We were able to use our model to define such concepts formally in a

way that, we hope, makes intuitive sense. We believe that our model

provides a reasonable abstraction in which algorithms for processing

database operations can be described and their reliability properties

studied. Partial evidence supporting our belief can be found in Section 3

of the present paper, where we state four fundamental algorithms and

rigorously prove their reliability-related properties.

Lest we be mistaken for proposing our model as the database reliability

". panacea let us point out that it is ineffective--if not misleading--for

analyzing the performance of the algorithms that can be described in its

terms. For example, from the redo/undo properties of the four algorithms

described in Section 3 one might fallaciously conclude that algorithm IV

has superior performance than either algorithm II or algorithm III, since

* Ialgorithm IV never requires either redo or undo while the other two require

one of them. By the same token one might also fallaciously conclude that

algorit7ins II and III are both superior to algorithm I, which requires

* both redo and undo.

&- "--

4". ' " : : " £ " " ' •",. " " , . " " ''/ " / - . .. ' .,- '.L .. '- V - ".'' --



-251--

The reason such conclusions are unwarranted is that the data structures

used in known implementations of algorithm I (ILo77], [V78], [HR79], 1BGH82])

may incur significant overhead. For example, the one implementation that

is known to achieve the properties of Lorie's algorithm tends,to cause

physical separation of logically related disk pages, thus adversely

*' affecting disk seek time. Our point is that models much more detailed

than the one developed in this paper seem to be necessary before we are

able to substantiate claims concerning the performance properties of

different algorithms for processing database operations.

One direction in which our model can be extended is toward replicated

distributed databases. One would hopefully be able .to define the

properties that distributed algorithms for processing transactions must

satisfy in order for the different copies of each data item to be con-

sistent. One would also hope to relate such properties to log-theoretic

properties of data replication, as in [ABG82] and [BG82].

Another hopeful direction is to extend our model for the purposes of

studying atomic commitment algorithms. The idea is to equip local system

states with two more components: one for messages to be delivered to

other sites and another for messages received. There will be "local

transitions" which can modify the database state, S, the stable write

- information, SWI, and the log, L, components of a local system state; and

"global (or network) transitions" which "deliver" messages from one site

to another by modifying the two new components. We must then define

various algorithms as transition functions of this kind and also different
*. .

classes of faults. One would hope that this will lead to rigorous proofs

of resiliency properties of various atomic commitment algorithms (described

- . ..- . . . . . . -. . . . . .

* °. . ." " ' ' - : " " " " ' ' ' ' ' ' ' " " : " d - In" " " - " "- " " W



-252-

as state transition functions) with respect to the different classes of O'

faults. At the time of this writing, however, we have not yet experimented

with this idea enough to have concluded whether or not it is a better way

for studying atomic commitment protocols than other formalisms, such as -3

the finite state automata-based formalism of Skeen [S82].

iS

- .-..-.-. ;...-

So . ,.



- U-".-w-------.--:--..-. -.- -

-253-

* "" 6. REFERENCES

[ABG82] R. Attar, P.A. Bernstein, and N. Goodman, "Site initialization,
recovery and backup in a distributed database system,"
Proceedings of the 2982 Berkeley Workshop on Distributed Data-
bases end Computer Netorks, 1982 (also issued as Aiken
Computation Laboratory TR-13-81, Harvard University).

[BG82] P.A. Bernstein, and N. Goodman, "Multiversion concurrency
' control-theory and algorithms," Proceedings of the ACM SIGACT-

SIGOPS Conference on Principles of Distributed Computation,
August 1982, Ottawa (also issued as Aiken Computation Laboratory
TR-20-82, Harvard University).

[BGH82] P.A. Bernstein, N. Goodman, and V. Hadzilacos, "Recovery algo-
rithms for database systems," to appear, Proceedings of 1983 ..-
IFIP Conference.

[D82] D.J. Dubourdieu, "Implementation of distributed transactions,"
Proceedings of the 1982 Berkeley Workshop on Distributed Data
Management and Computer Networks, 1982, pp. 81-94.

1G78] J.N. Gray, "Notes on database operating systems," in Operating
Systems: An Advanced Course, Springer-Verlag, 1978.

[H82] V. Hadzilacos, "Formalizing recovery in database systems,"
unpublished memorandum, Aiken Computation Laboratory, Harvard
University, May 1982.

1HR791 T. Harder, and A. Reuter, "Optimization of logging and recovery
in a database system," in Database Architecture, Bacchi and
Nijssen (eds.). North-Holland, 1979, pp. 151-168.

HR82] T. Harder, and A. Reuter, "Principles of transaction oriented
database recovery--a taxonomy," Universitat Kaiserslautern, FRG,
Technical Report 50/82, April 1982.

[HS801 M. Hamner, and D.W. Shipman, "Reliability mechanism for SDD-l:
A system for distributed databases," ACM Transactions on Data-
base Systems 5:4, December 1980, pp. 431-466.

[KP8l] P.C. Kanellakis, and C.H. Papadimitriou, "The complexity of
distributed concurrency control," Proceedings of the IEEE 22nd
Annual Symposium on Foundations of Camputer Science, October
1981, pp. 185-197. ".--"

[Li79] B.G. Lindsay, et al., "Notes on distributed databases," IBM
Research Report, No. RJ2571, July 1979. '7

.- ~ ...-. !%.

% " -- " ." "N



. . .. . . . . . . . . . .

-254- 44

[Lo77] R.A. Lorie, "Physical integrity in a large segmented database,"
ACM Transactions on Database Systems 2:1, March 1977, pp. 91-104.

[LS76] B. Lampson, and H. Sturgis, "Crash recovery in a distributed data
storage system," unpublished memorandum, Xerox PARC, 1976.

[Ly82] N.A. Lynch, "Concurrency control for resilient nested trans-
actions," unpublished manuscript, Laboratory for Computer
Science, MIT, May 1982.

[ML80] D.A. Merasce, and O.E. Landes, "On the design of a reliable
storage component for distributed database management systems,"
Proceedings of the Conference on Very Large Database (ULDB),
Montreal, 1980, pp. 365-375.

[R75] R.L. Rappaport, "File structure design to facilitate on-line
instantaneous updating," Proceedings of the 1975 SIGMOD
Conference, pp. 1-14.

[S81] D. Skeen, "Nonblocking comit protocols' Proceedings of the 1961
-7. ACM-SIGMOD International Conference on Management of Data, April

1981, pp. 133-142.
8..

[S82] D. Skeen, "Crash recovery in a distributed data base system,"
Ph.D. Dissertation, Department of Electrical Engineering and
Computer Science, University of California at Berkeley, 1982.

[V78] J.S.M. Verhofstad, "Recovery techniques for database systems,"
ACM Cormnuting Surveys 10:2, June 1978, pp. 167-195.

*. •.

r.



-255- -

SECTION VIII

SITE INITIALIZATION, RECOVERY AND BACK-UP

IN A DISTRIBUTED DATABASE SYSTEM

Rony Attar

Philip A. Bernstein--

Nathan Goodman

*Published in the Proceedings of the Sixth Berkeley Workshop on
Distributed Data Management and Computer Networks, Asilomar,

Feb. 1982.



-256- A

ABSTRACT

Site initialization is the problem of integrating a now site into a

running distributed database system (OS.Site recovery in the prob-

lem of integrating an old site into a DOSwhen the site recovers fromJ

failure. Site backup is the problem of creating a static backup copy of

a database for archival or query purposes. We present an algorithm that

solves the site initialization problem. By mdifying the algorithm

slightly, we get solutions to the other two problems as well.

Our algorithm exploits the fact that a correct DOES must run a seziali-

zable concurrency control algorithm. Our algorithm relies on the concurrency

control algorithm to handle all inter-site synchronization.



IV-. -.

-257- -9

14o..

1. TE SITE INITIALIZATION PROBLEM

Site initialization is the problem of integrating a new site into a -:

distributed database system (DDBS). The goal is to make the new site look

like all other sites. In particular, transactions must be able to access

data at the new site in the ae way as they access data at all other sites.

The main problem is to bring the database at the new site up-to-date relative

to the rest of the system. The problem is caused by replicated data: if the
Nls

new site stores datum X and there are copies of X elsewhere in the system,

then the value of X at the new site must agree with its value in the rest

of the system. There is a simple brute force solution to the problem: just

turn off the DDBS, wait for all activity to subside, and then load the new

site's database in bulk. Our solution is almost as simple as this, but far

more practical.

Our algorithm exploits the fact that a correct DDBS must run a serializable

concurrence control algorithm (cf. [BGJ). Concurrency control is the activity

of coordinating transactions that access a database concurrently. The goal is

to prevent concurrent transactions from interfering with each other. This goal

is usually formalized by the concept of serializability (e.g. [BSW, EGLT, Pa,

SLR, Th]): an execution of transactions is eeriaZixable if it is equivalent to

an execution in which transactions execute serially, one after the other with

no concurrency. Many algorithms are known for attaining this goal, e.g.

tw.io phase Zocking and timeB tcp ordering.

As we will see, the site initialization problem can be neatly framed in

. terms of mrializable executions. Once stated in these terms, a simple

solution will stare us in the face. All we .&ve to do is:

(1) turn on the concurrency control algorithm at the new site;

(2) tell all other sites to begin updating the replicated data at

the new site; and

t. .. . . .. ... - .- -.. % -.. ..- .-. . - , '. % % - .' . . , - . .... %



-758- .-

(3) not let any transaction read a datum X at the new site until X

has been updated at least once.

These three steps are a sketch of our algorithm. The rest of the paper

fills Ln the details, and explains why the algorithm works. We also show

how to use the algorithm to solve site recovery and backup problems.

2. BASIC CONCEPTS

A distributed database system (DDBS) is a set of sites interconnected by

a network. Each site runs two software modules: a transaction manager (TM),

which supervises the execution of transactions; and a data manager (DM), which

processes read and write operations on data stored at the site.

A ZogicaZ database is a set of logical data items, denoted X,Y,Z. A copy
'So'

of a logical data item stored at a site is called a phyeical data item. We

use XK,....,x to denote the physical copies of X.I m
A transaction is a program that accesses the database by issuing READ and

WRITE operations on logical data items. For notational convenience we assumue

that a transaction issues all of its READ's before any of its WRITE's.

Each transaction's execution is supervised by one TM. When a transaction

issues an operation READ(X), its TM selects a copy of X, say x i , and issues an

operation read(xi) to the DM that manages xi. (We use upper case for logical

operations and lower case for physical ones.) When a transaction issues an

operation WRITE(X), its TM issues an operation write(x) for every copy x.

of X.

The logical data items that a transaction reads(resp.writes) is called the

transactim's readeet (resp.itesfe).

We mathematically model executions of transactions in a DDBS by a log.

A log describes the order in which read and write operations are processed by

" . ... o



-259-

DMIs. Formally, a log is a partial order* of read and write operations.

For exaqle,

r [x )-.O w Ix x 1-.a-r Ex ---. w [z I

w x 1x # 2 yl 2 3 1 3 1

4:e
L1  I lylxY,1 I" x210-l[,xl

is a log. Notationally, riIx.] (resp. wiIx 1) denotes the execution of a 0

read (resp. write) operation by transaction i on data item xj. The

arrows indicate the partial order, which represents the order in which opera-

tions were executed. So, in L1 , Wo[x 1 1 x2 ,ylZ I ] executed before any other .

operation; r2 [xI] executed before w2 [xl,x2 Iand r1(X21, but it executed

concurrently with r ty1 ; and so forth.

We place one more constraint on the allowed form of logs: for each ,•

physical data item xV, all operations on x must be totally ordered.*4

That is, for each xi, we know the exact order in which operations on x.

occurred. We often relax this constraint for read operations, since the order

of read's is unimportant anyway.

*A partial order is a binary relation, , that is reflexive (a a), anti-
symetrica (a_<b and a_<b implies a-hi, and transtive la.,b and ..
b!_c implies a c). Traditionally, a distributed execution is modelled

as a set of sequential logs, one per 4 [BG]. We prefer using partial
orders because they allow operations from different DM's to be ordered and
they do not require ordering unrelated operations that can be executed con-
currently at the same DM.

**A total order is a partial order in which every pair of elements are related
(i.e., a'!b or b 9a). A total order is the same as a sequance.

I.."I

.. ,.

I - -.- * - . - . - e. -. - . - ~ ~ L. . ... *. .



-260-

Two 1.gs are equivalent if they represent executions that produce

the same final database state, and if each transaction performs the same

computation in both executions. The following proposition states a

well-known, and very useful, characterization of log equivalence. We need

one more definition first. Two operations conflict if they operate on the

same physical data item and one is a write. @1
Proposition I Two logs are equivalent if they contain the same operations,

and every pair of conflicting operations appear in the same

order in both logs.

3. CORRECTNESS CONCEPTS

The correctness of any system must be defined relative to user's expectations.

Intuitively, a system is correct if it does what users want it to do. We assume

that users expect a DDBS to behave like a serial transaction processor; that 0

is, users expect the DDBS to behave as if it were processing transactions one

at a time, against the logical, non-replicated database. (This assumption is

adopted almost uniformly in the literature.) A DDBS is correct if it behaves

like a serial transaction processor in this sense.

In this section we analyze DDBS correctness using the basic concepts of

Section 2.

A serial log is a total order of operations such that for every pair of

transactions, all operations of one transaction precede each operation of the

other. For example,

L2  w IX,tx2,lZ]--w r2 Ex] _- w2 Ix1, x1---wr3 [X 1'-' w3 [Z ] I-

r 1 -ll-rl [X2 -. wlX20Y

is a serial log. S.

.1."



-261-

Consider any read operation in a serial log, e.g. r2 [x1 1 above. This
2-.1

operation is said to be read-from the nearest write operation before it

that writes into its argument. E.g. in L r2 [x I reads-from wo[x1,,x21yz,

while r3 [x11 and r [x2] read-from w2 [xl1 x2]. Similarly, transaction T-

read"-xk-from T if Ti indeed reads x, T. writes and r NO reads-

*.Zi " from wj xk] . E.g. in L2, T2 reads-gcl-from To.

A serial log is one-copy equivaZent (or simply 1-seriaZ) if for each trans-

action Ti, and for each xk that Ti reads, T. reads-xk-from the last trans-

action before T. that writes into any copy of X.

The reader can verify that L2 is 1-serial. However, if we change w 2 xltx 2].

to w [x the resulting log is not 1-serial.
2 2

3 Ox 211 21 22 3 1 3 1

L is not 1-serial, because T reads-x -from T, which is not the last
3 3 1

transaction before T3 that wrote into any copy of X.

A 1-serial log represents a serial execution of transactions in which the

replicated copies of each data item behave like a single logical data item.

Therefore, every 1-serial Zog ia correct in the sense defined at the beginning

of this section.

A log is serializab e (SR) if it is equivalent to a serial log. A log is

-seriaZizabZe (1-SR) if it is equivalent to a 1-serial log. Since every

1-serial log is correct, and since every I-SR log is equivalent to a 1-serial

log, every 1-SR log is aZso correct.

We adopt -SR as our basic notion of correctness for the rest of this paper.

Sii:?:~

• .. °. .



* .* --.-- ; ------ ~.~p.-*... -.,

-262-

If sites are never added to a DDBS and sites never fail, attaining

1-SR is little more than a concurrency control problem. All we have to do
0

(1) make sure that each transaction writes into all physical copies

of its writeset, as described in Section 2; and

(2) synchronize read and write operations using any serializable

concurrency control algorithm, such as two-phase locking.

The following proposition states the correctness of these steps in terms

of logs.

Proposition 2 A log is 1-SR if every transaction in the log writes into

all copies of its writeset, and the log is SR.

4. SITE INITIALIZATION ALGORITHM

Suppose we have a DDBS that is running correctly -- i.e. its execution

is 1-SR -- and suppose we add a new site to the system. We need to integrate

the site into the DDBS in such a way that (1) all data at the site can eventually

be read, and (2) the resulting execution remains 1-SR.

In this section we describe an algorithm that accomplishes this task. First,

we use the concepts of Sections 2 and 3 to specify the kinds of executions

permitted by our algorithm, and to argue that these executions are correct

(i.e. satisfy requirements (1) and (2)). Then, we demonstrate an algorithm

that meets the specification.

Specification and Correctness "

The logs that our algorithm will allow satisfy the following properties.

Al. Each transaction writes into all copies of its writeset, except

possibly those copies at the new site.

A2. By some time t, every data item at the new site has been written

into at least once.



-263-

A3. No transaction reads a data item at the new site until that data

item has been written at least once.

A4. The log is SR.

AS. Let x be a copy of X at the new site, and let T be the•new x -.•..

first transaction that writes into x . By Al, T also writes
new x

into the other copies of X. Let T' be any transaction thatx

writes into any copy of X after T wrote into that copy. Then

T' must also write into xnew.

Stated a bit loosely, AS sinply means that once any transaction writes

into x all later transactions also write into x
new sew

We now argue that if a log satifies Al-AS then it is correct.

(1) A2 and A3 ensure that all data items at the new site are eventually

readable, thereby attaining the first correctness requirement. e
(2) it remains to prove that if log L satisfies Al-A5, then L is 1-SR.

By A4, L is SR; let L be any serial log equivalent to L. Consider any

reads-from relationship in L., e.g. Ti reads-xk-from T L looks like:

L - ... --- rwj[X . -.. • .

and we must show that no transactions between Tj and Ti in L writes

into any copy of X. We will show this by proving that every transaction that

follows T and updates any copy of X, also writes into xk .

Let T be any transaction that follows T. and updates X. If Xk is

. not a "new" data item, then T writes into xk by Al. Now suppose xk is

- "new". By Al and Proposition 1, T follows T. in L, and so T writes

O into xk by A5. In either case, since T. writes into and since T.

reads-xk-from T (and not from T ] Ti cannot come between T. and T..

Q.E.D.



-264- "-

Algorithm

Rules Al-A5 form a blueprint for a simple site initialization algorithm.
0

Lot us see how these rules can be attained algorithmically.

Al and A3 are trivial to implement. A4 is merely concurrency control.

Any serializable concurrency control algorithm can be used. The remaining

rules can be implemented as follows:

A2. For each logical data item X stored at the new site, run a copier

transaction that reads a copy of X at an old site and writes that

value into the new copy. (I.e. there is one copier transaction

per X.) Copiers must be synchronized by the concurrency control

algorithms exactly like all other transactions. *-

A5. For each logical data item X stored at the new site, designate a

guardian copy x of X at some old site. Beginning at some

(arbitrary) time t after the new site is added, the site holding

x alerts all transactions that update x to write into the new copy
g g

of X also. No transaction updates a data item at the new site

unless told to do so by its guardian.

These five rules constitute our proposed site initialization algorithm.

This description of our algorithm may seem too abstract, mainly because

we have not pinned down the concurrency control algorithm. For definiteness, . -.

let us see how the algorithm works in conjunction with two-phase locking.

We begin by reviewing the basic two-phase locking algorithm.

Associated with each physical data item is a set of locks. At any time, "

the set of locks on a physical data item may contain no locks, one write Zook,

or a set of read locks.

Suppose xj is stored at DH. Before processing read(xi) on behalf of

transaction TV DNi must set a read lock on xi for Tj Before processing

* - .. - , .



-265- AA I

write(xi) on behalf of T, M must set a write lock on x, for T

If DM i cannot set a lock for an operation, it delays the operation until

the lock can be set.* When a transaction terminates, all of its locks

are released.

Now let us see how to add a new site to the system. Suppose sites 1,2,...,n-1

are running properly and we wish to add site n. Site n begins the process by

sending an "I'm up" message to the DM's at sites 12,...,n-1.

Suppose the DM at site i, DKi, receives an "I'm up" message from site n.

From then on, for each guardian copy x at MA, when DMi processes a write(x,),

it tells the TM that issued the write to also issue a write(xn), wherex is

the copy of X at the new site. The DM also instructs its local TM to execute

copier transactions for each of its guardian copies. The copier for x must

obtain a read lock on xg and a write lock on X i.e. it must be synchronized

like any other transaction.

DMn uses the same two-phase locking algorithm as every other DM. However,n

it refuses to process a read(xn ) until x has been updated at least once.n n

For each logical data item X, a TM issues a write(x ) on behalf of a trans-

action that updates X, if and ony if one of its writes on x has been acknowledged

by a message telling it to do so. The TM must not update x until this point in

time.

*Since operations can be delayed while waiting for locks, deadlock is possible.
Deadlocks can be resolved by any of the standard techniques in (DG).

~~...... .......................... ....... .. ...... -.. . '-, ., ,- ,. ,- ,'2'2"

* . * .- %



-266-

5. SITE RECOVERY

Site recovery is the problem of integrating a site into a DDBS when the

site recovers from failure. As for the site initialization problem, the

goal is to make the recovered site look like all other sites. Once again,

the main problem is to bring the database at the recovered site up-to-date

relative to the rest of the DDBS.

Site recovery is obviously an important problem, but it has received

little attention in the literature. One early paper on DOBS reliability [AD),

which mainly studies reliable oorcur-ency oontroZ aZgorithne, disposes of
- " . -

site recovery with these few words:

How the new host is brought up to date depends on the
application. It may be done by transferring to that
host the journal of all updates since the host went down.
It may require transferring the database. [AD, p. 568].

Other related work includes [IfS, LS, LSP, MPH, Th, Sk, SS]. Some of these

papers (MPH, Thj are like [AD] in that they mainly study reliable concurrency A-4

control. (A piece of the algorithm in [MPM] is called Single Node Recovery.

But the algorithm only recovers the concurrency control algorithm at the site,

not the database.) Other papers study atomic comitment [HS, LS, Sk, SS], site

monitoring to keep track of which sites are up [HS], and other distributed

decision problems [LSP]. Again, site recovery in our sense is not studied.

One paper that does treat site recovery is [HS]. The solution is based on -.

the concept of Reliable Network (Relnet), a virtual machine that guarentees

reliable message delivery despite site failures. The Relnet is intended to be

a very general facility suitable for many kinds of distributed systems. Because

of this generality, the mechanism is rather complex.

Our approach to site recovery is narrower (and, we hope, simpler) than the

Relnet approach. We are not trying to attain reliability for arbitrary distri- -S

buted systems; nor are we trying to solve all DDBS reliability problems. Our

goal is simply to integrate the database at a recovered site into a running DDBS.

*. . . . . . .- .. ~ . .. .~ . -•-.o

• |~~- .7. " Y * ' " ? " " " T ° _ '



-267-

Evidently, site recovery and site initialization are almost identical

problems, and the algorithm of Section 4 can be directly applied here. 0!
There is one major caveat: our algorithm says nothing about multiple failures.

We believe the algorithm can be generalized to handle multiple failures, but

offer no hard evidence in this respect. Despite this caveat, the algorithm

of Section 4 solves big piece of the site recovery problem.

An Optimization

When using the initialization algorithm for site recovery, an important

optimization is possible. It is not necessary to fire up copier transactions

for all X in the logical database. Suppose we are recovering site f.

Only those X that were updated after site f failed need to be recovered.

Any X that was not updated while f was down still has the correct value at

f when the site recovers. If a spool (or journal) of all writes to site f is

maintained while f is down, as in SDD-l (HS], then when f recovers the

following processing can be done. Scan the spool to produce a list of data items
that were written while f was down. All data items not on the list can be

immediately marked as readable at DMf. Copiers are executed only for data items

on the list.

Notice that we are not proposing that spooled write operations be processed

in FIFO order, as in SDD-l. If X was written several times while f was

down, only the last value should be sent to f. If earlier values are sent,

the algorithm will not work correctly.

6. SITE BACKUP

A MAoW databae is a static copy of the database that is consistent but

potentially out-of-date. One use of backup databases is to speed up the pro- .I

cessing of queries. By reading the static backup, a query does not interfere

with updates, and so will not be delayed or restarted for concurrency control

:, ~~~~~~~~~~~~~~~~................-...-...... .... ............................. :.,........-... ----........ .. _.



-268-

reasons. The cost is that it may read out-of-date data. Backup databases are

also useful for archiving data.

Creating a backup database is similar to initializing a new site or recover-

ing a failed site -- similar enough that we can use our initialization algorithm

to do most of the job.

*- We begin by pretending that the backup database is a new site being added to

the DDBS. We run the initialization algorithm to bring the backup database

up-to-date, until all data items in the backup have been written at least once.

Now we must freeze the backup, by shutting off writes to it. However, we must

shut off writes carefully, so that the backup is frozen in a consistent state.

We can do this simply by running a query that (conceptually) reads the entire

backup database, and by ensuring that no data item is written once the query

has read it. This freezes the backup copy in the state read by the query. Since

the query is synchronized by a serializable concurrency control algorithm, the

frozen state is consistent.

For example, suppose we use the two-phase locking initialization algorithm

of Section 4. When all backup data items have been written at least once, we

run a query that sets a read lock on every backup data item. (The query may

deadlock while trying to obtain its locks, and so may need to be aborted and

restarted.) When all backup data items are locked, we shut off updating by

refusing to process any more writes against the backup. The resulting backup

database is consistent and can be correctly queried without synchronization.

One problem with this algorithm is that the "shut-off" query may deadlock

repeatedly and never finish. This problem can be fixed as follows. Once the

query begIns, the backup should refuse to grant any write lock requests from

transactibns that have not already set a lock on some backup copy. These requests

are simply blocked, and the transactions delayed, until the query manages to

get all of its locks. Then a very counterintuitive event happens -- the lock

* ..-..-..

,' ," ', ,, ,, ,, ,~~~~~~~~~~~. .. ..... ",".,,,-....,-....... . ......-.. " . . . . .. . ..- -.... .- '.-..... .,'",, -,



-269-

requests are unblocked, but since the backup is now frozen, the transactions

no longer need the lockst (It does not work to unblock the transactions

earlier.)

7. CONCLUSIO

We have presented an algorithm that can be used to initialize a database

at a new site in a DDBS, to recover a database at a formerly failed site, or

to create a consistent, static backup database. The algorithm is simple, yet

- introduces little overhead beyond what is normally needed for concurrency

control. We therefore believe it is a practical solution to all three problems.

The methodology that we used to describe our algorithm is also interesting,

we believe. First, we defined orrectness, i.e. what it means for an algorithm

to correctly solve the problem; this definition was stated in terms of execu-

tions (i.e. logs). Second, we specified the kinds of logs that our algorithms

would allow, and proved that every allowable log is correct. Third, we des-

. cribed an abstract algoritm that meets the specification. Finally, we gave

".. a concrete imp ementation of the abstract algorithm. These four steps,

() defining correct logs,

(ii) specifying an allowable subset of the correct logs,

(iii) designing an abstract algorithm that produces allowable logs,

(iv) engineering a concrete implementation of the abstract algorithm,

helps structure the problem and the search for solution.

One benefit is that we can engineer new concrete algorithms for specific

systems or problems just by redoing step (iv). For example, the concrete

implementation of the backup algorithm in Section 6, may have bad performance

interferes with many updates. This performance problem is not inherent in the

. .. abstract algorithm; it is just an artifact of the concrete implementation we

gave. A better implementation would use a concurrency control algorithm for

.: - •
. -

% .-.-.,.. .,.. . .,.. .- -. . .. , .-. , . --, ,. ., .... ...... . ... . . ..... .,.-., ... ,. : - ; ,



-~ -270-

-the backup in which queries and updates interfere less. Kultiversion

concurrency control algorithms [DNR, Re, SR) are likely candidates for 40

- this role. Engineering a backup algorithm that uses multiversion oon-

currency control is by no means a trivial task. But structuring the

problem as we have done, the designer does not have to start from scratch.



-271-

REFERENCES

[AD) Alsberg, P.A., J.D. Day, "A Principle for Resilient Sharing of
Distributed Resources," ProO. 2nd IntZ. Conf. Software fg.,

-r- Oct. 1976.

BGI Bernstein, P.A., and N. Goodman, "Concurrency Control in Distributed
Database Systems," A04 Coruting Surveys, Vol. 13, No. 2, (June 1981).

[BHR] Bayer, R., H. Heller, and A. Reiser, "Parallelism and Recovery in
Database Systems," AC Trans. on Database Syet., Vol. 5, No. 2
(June 1980), pp. 139-156.

'. [BSWI Bernstein, P.A., D.W. Shipman, and W.S. Wong, "Formal Aspects of
Serializability in Database Concurrency Control," IEEE Trans. Softw.
Eng., Vol. SE-5, No. 3 (May 1979).

[EGLT] Eswaran, K.P., J.N. Gray, R.A. Lorie, and I.L. Traiger, "The Notions
of COnsistency and Predicate locks in a Database System." Commun. ACM
Vol. 19, No. 11, (Nov. 1976), pp. 624-633.

[HSI Hammer, M.M., and D.W. Shipman, "Reliability Mechanisms for SDD-1:
A System for Distributed Databases," ACM Trans. Database Syst. Vol. 5,
No. 4 (Dec. 1980), 431-466.

[LSI Lampson, B., and H. Sturgis, "Crash Recovery in a Distributed Data
Storage System," Tech. Rep., Computer Science Lab., Xerox Palo Alto

* * Research CEnter, Palo Alto, CA, 1976.

(LSP] Lamport, L., R. Shostak, and M. Pease, "The Byzantine Generals Problem,"

Tech. Rep., SRI International, March 1980.

"MPH] Menasce, D.A., G.J. Popek, and R.R. Muntz, "A Locking Protocol for
Resource Coordination in Distributed Databases," ACM Trans. Database
S•.st. Vol. 5, No. 2, (June 1980), pp. 103-138.

(Pal Papadimitriou, C.H., "Serializability of Concurrent Updates," J. ACM '.
Vol. 26, No. 4 (Oct. 1979), pp. 631-653.

[Re) Reed, D.P., "Naming and Synchronization in a Decentralized (4mputer
System",Ph.D. dissertation, Dept. of Electrical Engineering, M.I.T.,
Cambridge, MA, Sept. 1978.

[Sk] Skeen, Dale, "Nonblocking Commit Protocols," Proc. 1981 ACM-SIGMOD
Conf. on Management of Data, ACM, N.Y., pp. 133-147.

[SLRI Stearns, R.E., P.M. Lewis, II, and D.J. Rosenkrantz, "Concurrency
Controls for Database Systems," in Proc. 17th Symp. Foundations Computer .

lo? Science (IEEE), 1976, pp. 19-32.

[SRI Stearns, R.E., and D.J. Rosenkrantz, "Distributed Database Concurrency
Controls Using Before-Values," in PrOC. 1981 ACM-SIGMOD Conf. on
Managment of Data, AC, N.Y., pp. 74-83.

-. . .



-272- A

(55) Skeen, D., and M. Stonebraker, "A Formal Model of Crash Recovery
in a Distributed System", Proc. 5th Berkele!/ Conference on
Distributed Data Maniagement and Computer Networks, 1981, pp. 129-142. @

[Th) Thomas, R.H., "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases", ACM Trans. on Database 48jt., Vol. 4,
No. 2 (June 1979), pp. 180-209.



-273-

SECTION IX

AN ALGORITHM FOR MINIMIZING ROLL BACK COST*

Vassos Hadzilacos

4 *Published in the Proceedings of the First ACM SIGACT-SIGMOD Symposium
on Principles cf Database Systems, Los Angeles, March 1982.



-274-

0. INTRODUCTION

Most automatic crash recovery mechanisms for database systems are based

on the concept of transa-t--tm comi ent. Speaking very informally, when the

system designates a transaction to be committed, it "promises" to install in

* 'the database all the updates effected by that transaction. Put another way,

should a crash occur after a transaction has become committed, the transaction

may not be restarted. If, however, a crash occurs before a transaction has

become committed, that transaction must be restarted. Several mechanisms that

achieve this behavior have been proposed by database system designers (e.g.

[R 75], [Lo 77], [G 78), [Li 79]). In all these systems, when a transaction

is restarted, it is "rolled back" all the way to the beginning. One exception

to this rule is System-R which allows to roll an uncommitted transaction back

to an earlier "savepoint", which is not necessarily its beginning [A 76].

In this paper we investigate the problem of finding the optimal set of

savepoints (one per transaction) to which uncommitted transactions executing

concurrently must be rolled back after a crash, so that the recovery cost is

minimized.

This paper is organized as follows. Section 1 informally motivates the

problem. In Section 2 we present a more formal model of transiction execution

in terms of which our results are stated and proved. In Section 3 we give an

algorithm for the problem under consideration and prove its correctness and

optimality. In many environments, cascading restarts are considered intolerable,

and sufficiently restrictive schedulers are used to prevent them. In such

environment6 ti.a problem dealt with in this paper has a trivial sol.ution.

*t This issue is-discussed in Section 4.



k AD-R138 891 DISTRIBUTED DATABASE CONTROL AND ALLOCATION VOLUME i 4/4
-i FRAMEWJORKS FOR UNDER..(U) COMPUTER CORP OF AMERICA

I CAMBRIDGE MA W4 K LIN ET AL. OCT 83

p UNCLASSI FIED RADC-TR-83-226-VOL-i F3@602-Si-C-e928 F/O 9/2 N



4.2.

~~11.25

MICROOPY ESOLTIONTESTCHAR

- %-

Q.4

- %

14.

MICRCOP RESLUO TES CHR



. ~~~~% .° . .... 7

-275-

1. THE PROBLEM

We consider a database system in which transactions operate on the data-

base concurrently. The system periodically takes "transaction savepoints" for

the transactions currently active. A transaction savepoint involves saving

the current state of a transaction in non-volatile storage. What exactly

constitutes the "current state" of a transaction depends on details that we

do not care to consider here. Typically it would contain such information as

the program counter, the values of all local variables created by the trans-

action so far, any locks held by the transaction, etc. We make no assumptions

concerning the timing of the savepoints. They may be asynchronous (i.e.

happening at different times for different transactions), or occurring with

different frequencies for different transactions. They system may be taking

savepoints at its convenience. Alternatively, the transactions themselves

could specify when savepoints are to be taken. All the savepoints of a trans-

action must be kept until that transaction becomes committed. That is, a

savepoint of a transaction must not "overwrite" a previous savepoint of that

(or any other) transaction.

If a crash occurs, the recovery algorithm selects an appropriate set of

savepoints, one per (uncommitted) transaction. Each (uncommitted) transaction

is then rolled back to its corresponding savepoint, and processing continues

from there, as if the crash had never occurred.2

'We are only concerned with "soft" crashes in this paper--i.e. crashes in which
volatile storage is lost, but non-volatile storage is not affected.

2 We must, of course, "synchronize" the actual database with the state of
affairs ieflected by rolling back the uncommitted transactions. For example,
all updates of any such transaction that occurred after the savepoint to which

P the transiction is rolled back must be "undone" from the database. This can
be achieved if the database system maintains an audit trail. This technique
is well-known (see, for example, (G 78], [Li 79]) and will not be addressed
here. This question is dealt with in an environment akin to the one considered

'., here in IF 81). Also, the conditions under which rolling back transactions does

not endanger the correctness of the database state are discussed in (H 81).

%" %....... .... ..... . ' - . .-- . . . . . . . . .. . . . . . . . *. p..* . . C.



= . % * b.•-- . * ° • •. . •' .. • - ... * , , , ° I • . . . °

-276-

At this point it might appear sufficient to simply roll back each trans-

action to its last savepoint. Unfortunately, this naive approach could well k. 9
- lead to inconsistent database states. The fundamental reason is that operations

on a database issued by different transactions are not independent of each

other. Informally, we say that an operation a depends on operation b, if a

was executed after b and the result of a would have been different if b

had not been executed. For example, a Read(x) depends on the immediately

previous Write (x), and a Lock (x) depends on the immediately preceding

Unlock (x) (assuming exclusive locking). The exact nature of the dependence

of operations on one another is not important here. We simply assume that

some dependence relation is specified which correctly reflects the semantics

of the various operations.

Consider now the following sequence of events:

(1) savepoint of transaction Ti  is taken

(2) operation a. of T. is executed1 1

(3) operation a. of transaction T is executed
3j

(4) savepoint of T. is taken
J

(5) the system crashes.

Assume, further, that operation a. depends on a.. If we were to roll back -.

each of T., T. to their last savepoints,we would be restarting the system
1)3

at a state in which operation a. is executed (since it happened before T 's
.%

last savepoint), while the ai (on whose execution a depends) is not

executed (since it happened after Ti's last savepoint). This is an inconsis-

tent execution state, at least according to our informal notion of operation

-' dependence.

This example illustrates that it is not always correct to roll back each

(uncommitted) transaction tc. its last savepoint. our task now is to provide

-- b

* *. ." ''" ,e . '..' "."-' dw"' ' -" "%"*" """". " ' " " " - "" ""' "" " " "" """ - " " ,'.", *" *."- "" "



-277-

.1o*

an algorithm for choosing a set of savepoints S*, one per uncomitted trans-

U() the execution state reflected by rolling back each transaction to

. he corresponding savepoint is consistent, and

(ii) S* is, in a sense, optimal.

These two conditions will be defined precisely in the next section.

2. FORMAL MODEL

Each transaction T. consists of a sequence of atomic steps or operations

a"il a •2 .,aix For each Ti we also have a set of savepointo

SP {s , and a mapping :SP 2,..., , such that

(s j)< < (s), if 1j <k~m. Intuitively, savepoint s.j was taken
411 11 1 A V

fter the execution of step a and before the execution of ai,k+l where

k-i (s ij). A concurrent execution of Tl. .. ,Tn  is a sequence consisting

". .. of the elements of Am {ai: l~i<n, lJ(ICX , respecting the order of

atomic steps belonging to the same transaction. With respect to a concurrent

execution E of TV ,. . . ,T  we are given a partial order E C AxA, where

we require that if aij 4E aj'je then aij appears before aij , in E.

-* E is called the dependence relation, and formalizes the intuitive notion of

operation dependence discussed in the previous section: if a - b then in
, E

execution E, step a "depends" on step b. Since we shall be dealing with a

fixed execution E, the subscript will be omitted from the symbol " E"* Let

S-{slt,.,ntn } where, as usual, s is a savepoint of transaction Ti.

1n ii
We shall say that S is a oonsistent set of savepoints (with respect to an

execution Z), iff S satisfies the following condition:

') if a *a then either j(si ) or '> i.(sit )"
ij ij' ii

:.......K:-i-...'..'...''..- ... ... ... .," '..'-. ':%' % ; : '; / . x : ." ,.N. ." '  .'

," '..'.". °mr . ". .." " " ".• •. -- •. --, ,'.-., - ".' q. ",,. "., . .' ,',, "k "p -, ' " -. % ,, ." . ,,N% -". .."



*-278-.

Intuitively this means that if an operation aij, depends on aj and we

roll back each transaction T to the corresponding savepoint in S, we are

±
restarting the system in a state where either aii has been executed

(JCisiti ) or aiji has not been executed (j' > (si )). As we

argued informally in the previous section, unless this condition is satisfied,

the state we are restarting our system from is inconsistent.
.--.'

Now we need to define what is meant by an "optimal" set of savepoints.

TO do o, we define the class of "reasonable" cost functions. Let sit. s ir.

be savepoints of Ti. We say that f(x ,... ,x) is a reasonabte co8t function
1

iff for all J, l jCn, if ti ri for ij'j and tj <rji then

f(5t 1  0nt)> f( r*...Isnr ). This captures the idea that the more we

roll back, the greater the cost of recovery.

We say that a set of savepoints S* is optimaZ iff it minimizes a given

reasonable cost function among all consistent sets of savepoints. Fortu-

nately, the same S* minimizes aZZ reasonable cost functions (Lemma 3).
..'.

- --bThe class of reasonable functions includes such obvious candidates for

n
optimization as f(Slt ''snt " i-i c(s it) and f(s t 1...,s ) w

M axi4 n c(sit where c(s±i ) is the cost of restarting Ti  from save-

point sit , under the assumption that it costs more to restart a transaction

from an earlier savepoint.

3. TIM ALGORITH1 A4D THE PROOF

We now describe an algorithm for finding the optimal, consistent set of

savepoints that minimizes any reasonable cost function.

4 ., . . . . . *. . ... . . . ..*. -. . . . . '



,. .:-279-

..... _.lritkml:.-

I.u: Fdr each transaction T the set SPi l the function *.: SP "

and the dependence relation - on the set A- {a lin,

I.

Output: A consistent set of savepoints S* minimizing any reasonable cost

function.

Method:

Step 0: Construct a digraph G- (N,E) with node set N-{s..: liln,

l;j'm1)U {8 li n), where 01(si0)-0 by fiat, and edge set

E-{(sij si,,): there are steps aip, ai,p, such that a ip-a ip and

.sij ) <p4 (s i,J+l) and Oi'(si',j'- ) <p i i'j' '  .'s.'3

Step 1: Initialize t i :- mi , l4in.

Step 2:

while 3(s PS ,)CE s.t. jit. and j' t i ,

tie ti, -1 od

Step 3: S* : i 1...Sntn"

S. '. We now prove the correctness and optimality of Algorithm 1 through a sequence

of Lemmata.

*0 LEMMA 1: Algorithm 1 away8 terminates.
~,.7U-

Proof: The only reason it might not, is the while loop of Step 2. Note,

however, that each time the loop is executed, exactly one ti, is decremented

by 1. Moreover, if ti,-0, all edges (sijsi,j,)E E violate the while

condition.becauee J' 1 (as there are no edges involving silo) and hence

3Note thar there is a convenient abuse of notation here in that we confuse
the nodes of G with the savepoints.

, 4 .* ' . % , %

. . . . . . .. .**%**%~ 
V** 

* .~ * *. 0



-280-

9> t. Thfoe, no ti, needs to be decremented below 0 and after at most

Z i-1 m i  fterations the while loop will terminate. .

LEMMA 2- A set of savepoints s s is consistent iff no edge of
1t n

G satisfiee the whiZe condition in Step 2 of Agoritvn I.

Proof: (only if] Suppose S is consistent, yet there is an edge (s ,s )E 
1) i'j'

such that jOt. and j' ti,. By construction of G, we have that there exist

a.p. ai,p, such that a ip*a i  , and *i(sij) p4ilsi,j+i) and(s...

0i, (si', j.-1) p 140 (si'j,) . But then i (sit i(s ij ) <p and

P'' s (s'' ' (it), violating the consistency condition. ....-

[if] Suppose S is not consistent. That is, there exist a and a., ,

such that a a fp , and (1) P> 0 (s and (2) P' 1  Cs.,)" Let

j, j' be such that (3) i(s ij) <p i(si,j+l) and (4) oi'(sit',j-i) < p '  _

S.' (si'j')" By the construction of G it follows that (s ijsiij,) E. From
), (3) it follows that J> t and from (2), (4) that J1t i , . Thus

(s.js.,.,) satisfies the condition of the While loop. "

Leama 2 implies the following

COROLLARY 1: When Algorithn I terminates, S* is a consistent set. 0

LEMMA 3: There is a unique consistent set that minimizes aZl reasonable

functions.

Proof: Let S-is O I and S'-{ ,...,S be two distinct
it n 1 n

consistent sets both minimizing some reasonable function f. That is,

flt,. .ntn - r ' Snrn We claim that S- Is ..., s.

where l 1 nrnlq 1  q
whore qlmax(tslrl) is also a consistent set. For if not, by Lema 2,

there would be an edge (sii , ,) CE such that JOqi and Cqi".

-5* ,, 'S. , ,, .. .. .. . ,. *.. . , . . . .. , ... ,, .- . . . . .. , -.. ,, . , ., - ,. . .. ,, . ,.. , *. ,\x ,- ,, .S'_ , . . - . . ' . . . . .. . . , , . ' , , . '...
.,... . . ... . ,. .. . , vV' .



-281-

There are four cases to be considered: (1) if q,=t, and qi, "ti, then

S is not a consistent set; (2) if q r and q ri , then S' is not

a consistent set; (3) if qi t and q'ri'' then S' is not a con-

sistent set; and (4) if qi, ri and qi' mti, then S is not a consistent

set. All cases contradict the assumption that S and S' are consistent.

Hence S is also consistent. By the definition of reasonable functions, it

cannot be that sit < sir or that sit > a ir for all i, for otherwise it

could not be that both S and S' minimize a reasonable f. Hence S is

different from both S and SI, and by the definition of reasonable functions,

f(s 1q,.,S )<fllte,.,nt )< = fllr8 ,nr ), contradicting theq nq n I n

assumption that S and SO both minimize f. We have shown that for any

given reasonable cost function f there exists a unique optimal consistent

set of savepoints. It is now easy to show that the same set is optimal for

aZZ reasonable cost functions. Let f, f' be two such functions, and

suppose that the respective optimal consistent sets of savepoints are S, S'.

Unless t 1 ri for 14 i (n, we would have that f and f' yield a smaller

cost on S (defined as above) than on the optimal S and S' respectively,

a contradiction. a

Lemma 3 justifies our quest for the optimal consistent set of savepoints

(as opposed to some optimal such set).

Let S- {st s ,snt 1, S'-S , F.. nr be sets of savepoints,
n 1 n

one per transaction. S and S' are not necessarily consistent. We say

that S tr n forms in one step to S', written S S ' iff there is an edge

(a s j)CE such that J t and J O tiI and r 1o t -1 and iit

for all i0 A. Note that, according to this definition, Step 2 of Algorithm 1

repetatively transforms a set of savepoints until it cannot transform it any

..'*. ,. .: , ,. 9. . :.-,..-.,.. ...:.:..... ..-........-..... ..... ......- ...--.......... . • .-. . . -..... ,
NO % . . .. . . -

~~ ~ V% . j7 - .-- '.~* . . . .



-282-

Nj

more. We say that S transfoms to 5' iff S +- S', where s- +is the

transitive closure of -

LUME 4: if S 0 -' S, S0  Si' S, t,- S and s is consistent, then

Si I.~ S.

Proof (sketch): Recall that by the definition of S - S', the savepoints

of S and S' are identical except those of one transaction. Let t(S,S')

denote the index of that transaction--i.e. t(S,S')- =i0  where S,S' are as

in the definition of "'-" given previously. Now let S0 t- S I S2 9 I..

S .We also have that S- S1. We shall define inductively

*~1+ i4 scthtS orl k and S =Sk - S. This is

done as follows. Let m be the minimm~ index such that t(S 1 ,-S ) = t(S01s{).

Such an m exists, for otherwise S would not be consistent. Having defined

Sj,..S!for some J< m we define S!' by choosing t(S!,S' ,)= t(S S)
j l 3 j3 j-l' j

It is easy (but tedious) to verify that this can be done legally, that

S; I- S!' for 114j< m and that S' -S .We may then define S!=S. for
3 ~ m m 3

m4 j4k, thus getting S0 - 1 with S 5k=5S Hence,

S! 1-+ S, as wanted.

Lon=a 4 implies that Algorithm 1, which as stated is non-deterministic,.5,

will always terminate with the same consistent set of savepoints S*, no

matter in what order the edges of E are considered in Step 2.

We are now in a position to state and prove

THEOREM 1: Algorithm 1 computes the optimal consistent set of savepoints

with respect to any reasonable cost function.

Proof: Let S*- {8 P...,s Ibe the set of savepoints computed by
it1  ntn

Algoritftn 1, and let S {8s 1...,s~ be the set minimizing any
1 r1  n

reasonable cost function. S3  is well-defined by Lemmta 3. By that same

.5. ... .. . . . . .
*5** .. . . . .



;:, -283- "

lemma, ri0t for li4n. Hence, if S*OS m  there is non-empty set

B- 1k: I k kn and tk < rk). Consider some execution of Algorithm I computing

S* and let i0 E B be the element of B such that at some stage of the execu-
a--

tion t. was set equal to rI in Step 2, while for all kE B-{i tk > rk"
10 10r.

We claim that it is possible to select edges satisfying the whiZe condition

of Step 2 so that t. is not decremented before for all kE B-{i 0 ,
1 0

* * 0t.1rk. For, if this is not the case then there exists some point in the

execution of Algorithm 1 such that ti -ri0, tk>rk for all kEB-{i01} ,,0 0, k

, .'. and the only edge(s) satisfying the whiZe condition of Step 2 is (are) of

the form (s ,s. for some p, q, q'. Note that at this point t, )ri

S-for all 14i4 n. Then we would have that (at that point of the execution)

q t and q'4t. But we also have that t. r and t 0 r . There-P 1i P P
0 0p pfore, qOr and q' 4r and hence S is not consistent by Lemna 2

(since the edge S ,siq,) satisfies the while condition for S- Sm)
pgq U'

This contradicts the choice of S Therefore, we may in fact choose edges

as claimed above. But then either the algorithm will terminate before

t. -r. for all iE B- {i }--and then it would be the case that there exists

some k such that t > , contradicting the choice of S and Lemma 3--or,k k m

at some stage t. -r. for all iE B. By the definition of B, t = r. for~1 1 1 1" .

all 14i4n. Hence S*-S, as wanted. -

V.,,.,

PV 4. SOME REMARKS

The interdependency of operations issued by different transactions

sometimse causes a transaction to restart due to a failure of some other

transaction. This "domino effect" is known as cascading restart, and is

usually considered to be undesirable. It is particularly serious if the

.-.. ,.- .Z



-284- a

transactions that might have to be restarted are committed, as this defeats

the very purpose of commitment. The usual remedy is to adopt a sufficiently -

conservative scheduling policy that avoids cascading restarts. If such a

strategy is used the optimization problem treated in this paper is not an

issue. ,

For example, in System-R where this savepoint feature has been

implemented it is always possible to roll each transaction back to its last

savepoint: this is sufficient to guarantee consistency and is obviously

optimal. The reason this works is that System-R requires that all of a

transaction's locks be held until that transaction is committed. There-

fore, there are no dependencies between uncommitted transactions; the graph NOW

G constructed by Algorithm I would contain no edges; and the initial choice

of savepoints Is ,... s would be consistent.

The optimization problem treated in this paper becomes non-trivial in

environments where either cascading restarts are not an issue or methods

-" " other than restrictive schedulers are employed to avoid them. An example

of such an alternative strategy would be to delay commitment. The benefit

of such other strategies is that less restrictive schedulers allow greater

parallelism and, therefore presumably better response time and resource

utilization. We know of no study, however, which provides quantitative

evidence supporting either strategy. This remains a major research area.

5. ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor Phil .J.

Bernsein, and Professor Christos Papadimitriou for their support,

encouragement and constructive criticisms of this work.

V

. :: -..:.

* .: . : : .. N ; ; . . . .- ..*.. .:. ., -.. :. -. ..- ,- .-. ' -, - -, ..- • - : -- -.--- ..-- ---



-285-

6. REFERENCES

(A 76] Astrahan et aZ., "System-R, a relational approach to database manage- ., ,.'.,

sent", ACM Transactions on Database Systems, 1:2, 1976, pp. 97-137.

[F 811 Fussel, D. et aZ., "Deadlock removal using partial rollback in data-

base systems", Proceedings of the 1981 ACM-SIGMOD Conference,

pp. 65-73.

IG 781 Gray, J., "Notes on database operating systems", Operating

Systems: An Advanced Course, Springer-Verlag Nol on Computer

Science, 1979.

[H 81) Hadzilacos, V., "Crash recovery in centralized database systems",

unpublished manuscript, 1981.

[Li 79] Lindsay, B.G. et aZ., "Notes on distributed database systems",

IB1M Research Report, 1979.

[Lo 77] Lorie, R., "Physical integrity in a large segmented database", ACM

Transactions on Database Systems, 2:1, 1977, pp. 91-104.

[R 75] Rappaport, R.L., "File structure design to facilitate on-line

instantaneous updating", Proceedings of the 1975 ACM-SIGMOD

Conference, pp. 1-14.

. 2

. .-... -



0

MISSION
Of

Rome Air Development Center
RAVC ptan,6 and executez tede kc, devetopment, te~st and
Aeteeted acquihition ptogkam in Auppo'ut oj Command, ContLot
Corwiuniceationz and Intettigence (C3 1) activitie6. TechnZcqt
and engineeting .6uppott within ~eah6 oj technicat competence

~sPtwvided to ESP Ptogyxrn 066ice (PY1J and otiwt ESV D
eltement6. The p't2nciat .technvicat mi-6h6on a~ea,6 aAe
COmmuniCation.6, etee*J~omagneic guidance and covniAot, .6uL-
veitjtance od g4owid and aeLo6pacz object:6, in-tettgence da~ta
cottection and handting, indo'tmation .6y6-tem technotoqy,
icono6phe~ic ptopagation, 4otid h6tate 6cience6, mickowave
phyj6ic6 and etecAni 4etiabitity, maintainabitity and

coptbiiy

L0



N. 6.4

Jr 7"

* -p

.1*.

''- C' 1 4'

Yi .K"' t45
;, - '!s.& " IA S... *

4 791'' ~ *, '7 :1p ' S

j%.,tv4 itt
4-, -'t

4
-- '.Alt

a--' C ~ .* < r ,.AK' - '
4

jp

-Vp. **' M

p3j0 4 -IT, ;r:f:.'


